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Abstract: This work presents a simulator of honeybee (Apis mellifera) colony foraging behavior. Hon-
eybees are social insects that show a high level of organisation and very complex behaviour. This in-
cludes the coordination of foraging efforts thanks to their sophisticated mechanism of advertising and
recruitment, which includes the well-known waggle dance. This foraging process is needed for general
pollination and makes honeybees crucial for a sustainable environment.

There exists previous work in the area of honeybee modelling and simulation. Some simulator models use
such a fine resolution that can only run for real-time hours. Other work is focused on simply replicating
a published observation. Instead, we are interested in simulating long time periods (e.g. months) and
learning how the foraging spread patterns and distributions can affect the local flora or contribute to the
transmission of diseases or parasites.

The main motivation for this work is to support the decision making process in the Biosecurity context.
Biosecurity plays a key role in the economic viability of Australia’s plant industries due to the devastating
effects that plant pests and diseases can cause. Hence, the importance of preventing the spread of diseases
between apiaries or to a disease free area (e.g. Fire Blight (Erwinia amylovora) is a serious disease in
many fruits and uses honeybees as one of its main vectors for transmission).

The simulator is Web based1 so that users do not have to install or update software, or worry about
enough computational power or platform compatibility. The user interface allows the introduction of the
simulation parameters (e.g. spatial resolution and size, model configuration settings, visual specification
of the simulation environment on the map) and receive a detailed results report. A simulation of several
weeks usually takes a few seconds to complete.

The simulation model is stochastic and discrete in time with 1-trip time steps, which is approximated by
difference equations. It is also explanatory, meaning that its behavioural rules depend on well-established
entomological knowledge. It can support any number of beehives and floral patches over a two dimen-
sional landscape of unrestricted size and varying resolution. The main simulation model has four inter-
related models that include i) a spatial model that represents the landscape to simulate by a grid of cells;
ii) a flora model that represents a patch with a number of flowers and seasons defined by nectar quality
and quantity; iii) a weather model that considers time periods of temperature and daily hours of light;
iv) a foraging model, which represents the foraging behaviour of a honeybee colony.

Keywords: simulation modelling, spatio-temporal model, honeybee, foraging, biosecurity management.
1http://beetle.csse.uwa.edu.au/honeybee-modsim/
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1 INTRODUCTION

The ability of honey bee (Apis mellifera) colonies to maximise their foraging efficiency is key to the
colonies’ continued survival. Individual foragers seek and retrieve pollen and nectar from flowers to
feed the colony. Floral patches differ in the quality and quantity of their nectar and pollen, the size of
the patch, and the distance from the colony, all factors that affect the profitability of foraging on the
patch [Winston, 1991]. The profitability of a floral patch is communicated by individual foragers to
other bees in the colony via complex behaviors and other signals. These other individuals may alter their
behavior accordingly, and their responses may in turn affect the behavior of the original forager [Seeley,
1985]. Thus foraging in honey bees is a dynamic and highly interactive process that is driven by the
sharing of information about the location and quality of resources in the surrounding environment.

The foraging behaviors and hairiness of honeybees mean that they often inadvertently transfer substances,
such as pollen, among plants. Honey bees are capable of increasing the yield in 96% of animal-pollinated
crops [Potts et al., 2010], and the value of the increased yield and quality achieved by honey bee polli-
nation of crops in the U.S. is estimated as $14.6 billion [Morse and Calderone, 2000]. Because honey
bees can also act as vectors of some plant diseases such as Fire Blight (Erwinia amylovora) and also
as vectors of biological control agents (e.g. the microbe Aureobasidium pullulans, which can be used to
attack E. amylovora [Moosbeckhofer et al., 2008]), understanding patterns of foraging behavior will aid
in implementing prevention or facilitation measures, respectively.

Incursion and outbreak management are key aspects to biosecurity, which is a major concern in a country
like Australia where economic viability of plant industries rely to an extent on freedom from pests and
diseases. Strategies to test pre-emptive surveillance and estimate rates of spread of pests or diseases in
a spatial environment in real time are not currently available. A ‘what if’ scenario simulation tool is
needed to address this shortcoming [Garcı́a Adeva et al., 2010]. The aim of this project is to provide
such a decision support tool. In consequence, simulating honeybee foraging behaviour will allows us to
determine the extent and rate at which surrounding flora may be affected by a disease such as Fire Blight.

The structure of this paper is as follows: in Section 2, we discuss some related work; Section 3 describes
the models that define the simulator; Section 4 offers some initial experimental results. We finish with
some concluding remarks in Section 5.

2 RELATED WORK

There is a significant quantity and variety of research in simulation or modelling of different aspects of
honeybees. Some of the most relevant include de Vries and Biesmeijer [1998], which consists of a simu-
lation limited to replicate the foraging experiment that Seeley et al. [1991] performed. Also based on this
same experiment, Camazine and Sneyd [1991] proposed a foraging model based on differential equations
for foraging, which considers nectar quality in the decision making process for resource abandonment
and recruitment of foraging bees. Ghosh and Marshall [2005] proposed a model of learning and collec-
tive decision making in honeybees engaged in nectar foraging. However, this model is limited to one of
two foraging sites where one site has better nectar than the other in order to understand decision making
processes by interacting swarm entities. Bailis et al. [2010] proposes a very well-implemented simulator
that models individual foraging bees at a very high level of detail in order to compare the value of shar-
ing food source position information through the waggle dance and private information about previously
encountered food sources.

What these previous simulators have in common is that they can only run for short periods of real time
(e.g. one day [Camazine and Sneyd, 1991] or even a few hours [Bailis et al., 2010]). Most of them are
also fairly restrictive in what type of environment (e.g. only one beehive; a specific number of foraging
bees or nectar sources). In contrast, we are interested in much longer periods of time (e.g. months) and,
most importantly, to help answer the question about how foraging patterns and distributions can affect the
local flora, hence potentially contributing to the transmission of diseases or parasites, or supporting the
distribution of certain biological control agents.

2508



Garcı́a Adeva et al., Simulation of Honeybee Nectar Foraging for Determining Effects on Local Flora

3 SIMULATION MODEL

Because traditional mathematical models that provide analytical solutions are only possible for extremely
simplified environments, we employ simulation modelling where the abstraction of the particular entity to
predict is solved by steps numerically [Swannack, 2008]. The simulation model is based on empirical data
and expert knowledge in the field of honeybee ecology and management. Simulation models are often
divided between deterministic and stochastic [Odum, 1971]. Deterministic simulation models always
produce the same result for a given set of input data and model parameters, whereas stochastic ones
include one or more random processes, usually as a way of dealing with uncertainty [Law and Kelton,
1991]. While the flora model (see Section 3.2), weather model (see Section 3.3), and spatial model (see
Section 3.1) are deterministic, the foraging model (see Section 3.4) is stochastic.

The evolution of the simulation process is approximated by a difference equation. Being t the duration
of the simulation process, we define ∆t as the time-step used to partition t into so that yn+1 = yn +
∆t f(yn, xn). In this case, ∆t corresponds to one foraging trip, with several of these happening within
each simulation day. Given the average temperature during the day Ti and number of daylight hours hi
on day di, the maximum number of foraging trips fmax

i = µhi, with µ = 0.8 when 15 < T < 33, µ = 0
when T < 8, or µ = 0.4 otherwise. The final actual number of foraging trips will be fi ≤ fmax

i if the
daily nectar is depleted before the end of the day.

The simulation parameters are parsed in order to create the grid representing the simulation area by using
the spatial model described in Section 3.1. At the beginning of each simulation day the appropriate
average temperature is selected by applying the model described in Section 3.3; then the current daily
season of each flower patch is chosen using the model described in Section 3.2. For each foraging trip in
the day, the foraging model detailed in Section 3.4 is used to describe the honeybee foraging behaviour.

3.1 Spatial Model

The spatial model provides a two-dimensional abstraction of the foraging bees as they spread over an area
containing flower patches. The simulation area consists of a landscape whose bounds are initially defined
by the user through the simulator’s user interface. The extent will usually vary from a few hectares to
several hundred thousand km2. The landscape can contain areas (i.e. polygons) representing floral patches
and locations indicating beehives.

This landscape is represented as a rectangular planar region L of width wL and height hL. Discretisation
of L is performed by means of a rectangular sparse grid G with its maximum number of horizontal and
vertical cells being wG × hG . A grid cell is defined by g = (x, y) ∈ G, where x, y ∈ Z; 0 ≤ x < hG ; and
0 ≤ y < hG , with only those non-empty cells being created dynamically when needed. Therefore, wG
and hG also indicate the simulation resolution, with its maximum value limited by such a cell size where
any given cell contains at least 1 flower.

The translation from a coordinate c = (lat, lon) ∈ L to its cell position g ∈ G is calculated with
x =

⌊
dh(c)wG wL

⌋
and y =

⌊
dv(c)hG hL

⌋
, where dv(c) and dh(c) indicate vertical and horizontal

distances respectively from c to the bottom-left coordinate of L.

All grid cells are square in shape and have the same size, based on the horizontal resolution selected by
the simulator’s user (typical values will be 50 – 500). Because this grid configuration resembles a raster
image, there is a plethora of algorithms from the discipline of computer graphics to take advantage from.
A cell carries information about how much nectar there is, based on the average number of flowers and
the average net nectar per flower. Given an average nectar quantity per flower q and its nectar quality rate
l ∈ [0, 1], net nectar is defined as their product.

An area indicating a floral patch is expressed as a closed polygon defined by the list of its ordered (either
clockwise or counterclockwise) vertex coordinates VL = (v0, v1, v2, . . . , vn, v0) with vi(lati, loni) ∈
L, 0 ≤ i ≤ n. Discretising an area VL to obtain its corresponding VG simply consists of translating each
vertex vi ∈ L into corresponding cell positions vi ∈ G. Another instance of a frequently required oper-
ation is to determine whether a particular cell is included within an area, which we achieve by applying
the Jordan curve theorem as proposed by Haines [1994].
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Figure 1: The FSM representing the 65-day cycle of a flower patch with four seasons 〈10, 200, 0.7〉,
〈5, 100, 0.9〉, 〈20, 50, 1〉, and 〈30, 0, 0〉.

3.2 Flora Model

A flower patch is an area containing the following general information: total number of flowers in the
area and one or more cyclic seasons. A season indicates for how many days these flowers have the same
average quantity and quality of daily nectar production.

A traditional Finite State Machine (FSM) is used to represent a sequence of seasons corresponding to the
same flower patch. Considering the set of flower seasons E = {e0, e1, . . . , ek} each season ei, 0 ≤ i ≤ k
can be described with a three-tuple 〈di, qi, li〉 where di expresses the number of season days, while qi
indicates the average nectar quantity value per flower during this period and li ∈ [0, 1] corresponds to
the nectar quality rate value. The machine representing these seasons has states S = {s0, s1, . . . , sk}
to represent E, hence |E| = |S|. The input alphabet includes all the consecutive day numbers for E,
thus consisting of I = {1, 2, . . . , t}, where t = 1 +

∑k
i=0 di. The output alphabet is given by all

the two-tuples extracted from E, producing O = {〈q0, lr0〉, 〈q1, l1〉, . . . , 〈qk, lk〉}. The transition from
one machine state to the next occurs when the input for the current state is the last day of the season
represented. A transition from the last state (i.e. flowers season) to the first state is automatically created
to represent the cyclic nature of seasons. This transition function has to be triggered on each simulation
day for all flower areas.

Figure 1 shows the machine representing the four flower patch seasons 〈10, 200, 0.7〉, 〈5, 100, 0.9〉,
〈20, 50, 1〉, and 〈30, 0, 0〉. This means a total natural cycle of 65 days, thus t = 66. This corresponds
to four states S = {s0, s1, s2, s4}, with outputs O = {〈200, 0.7〉, 〈100, 0.9〉, 〈50, 1〉, 〈0, 0〉}, and inputs
I = {1, 2, . . . , 66}.

3.3 Weather Model

The simulator uses weather information that is crucial for determining the number of daily foraging trips.
This information includes temperature (in ◦C) and number of daylight hours for the whole simulation
area. These temperature periods are provided as a sequence of three-tuples, each one specifying a number
of days along with the temperature and the number of daylight hours during them such as 〈di, Ti, hi〉.
The sum of the number of days for all these pairs

∑k
i=0 di corresponds to the total number of days of

simulation.

Like the Flora Model described in Section 3.2, this model is based on a FSM. In this case, each state
si ∈ S represents a number of consecutive days with the same temperature Ti and daylight hours hi.
Hence the number of states |S| is determined by the number of temperature periods. The input alphabet
includes all the added period days I = {0, 1, 2, . . . , d}. The output oi ∈ O that corresponds to si is the
temperature and daylight hours for that period 〈Ti, hi〉. The transition from one state to the next occurs
when the input for the current state corresponds to the last day of the period it represents.

3.4 Foraging Model

From a given population of forager bees at a beehive, this model aims to determine i) how many foragers
will visit particular flowers depending on proximity, nectar quality, and nectar quantity; and ii) the number
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(b) Flower patch detection by size and beehive distance.

Figure 2: Probability distributions of the dispersal kernel used by the foraging model.

of foraging trips for a particular day. The foraging distance and number of individuals finding a flower
patch at a certain distance is defined by a kernel, which describes the spatial distribution of foragers in
the honeybee vicinity as a function of distance from the beehive and the size of flower patches.

Foraging is similar to local dispersal frequently found in insect modelling. There are many kernel-based
dispersal models found in the literature based on distribution such as Laplace, Gaussian, Ribbens [Clark
et al., 1998], and Cauchy [Shaw, 1995], which may be considered as arbitrary equations that fit particular
dispersal data sets well. Using these kernels require that previously parameters for the chosen distribution
to be estimated by registering the dispersal distances between occurrences in distribution data from one
time period to the next, so that the distribution can be fitted to the frequency distribution of distances [Pitt,
2008].

Our dispersal kernel, however, uses an empirical probability distribution to determine foraging dis-
tances. Figure 2(a) details the probability distribution used to determine how far foragers will fly as
reported by Seeley [1985]. For instance, 70% of bees will forage within (0.2, 0.4] km, 28% will do
it within (0.4, 1] km, and so forth. Figure 2(b) provides the graphical representation of the probability
of suitable flower patches being detected by nearby foragers based on distance and size, expressed by
Pf = min

(
s

1000

(
1− d

10

)
γ, 1
)
, where s ∈ [0, 1000] indicates the flower patch size in m2, d ∈ [0, 10]

is the distance in km between the flower patch and the beehive, and γ > 0 corresponds to the scale
parameter, where the larger its value, the higher Pf .

These two distributions are combined to determine the probability that each cell in a flower patch is
visited by honeybees. The basic process for making this decision is based on the grid G, where a cell gi =
(xi, yi) ∈ G in this grid represents a discrete location in the simulation area, contained by flower patches
F = {f0, f1, . . . , fm}. The foraging bees from a beehive are represented by B = {b0, b1, . . . , bn}. By
traversing all the possible dispersal distance ranges shown by Figure 2(a) such as rba, r

c
b , r

d
c , . . . along

with the minimum possible distance increment ∆r in G (i.e. the length of a cell side) for as many times as
possible (i.e. max{n−xi+1, xi,m−yi+1, yi}), we obtain a list of cells C = (c0, c1, . . . , ck) belonging
to the ring that corresponds to the first foraging distances interval [rba, r

c
b). This ring of cells is created

by applying the well-known midpoint algorithm [Aken, 1984], thus creating circles of cells as long as
rba ≤ r < rcb . Those cells from C that are contained by any flower patch in F are selected and ordered
according to their probability of being found Pf , to then be used to sequentially distribute the bees from
B. The number of bees from B assigned to each cell in C is proportional to the relative amount of net
nectar in the cell. The nectar in those cells will be depleted accordingly. We use an average of 40 mg of
gross nectar collected per bee per trip [Beekman and Lew, 2008].

4 INITIAL SIMULATION EXPERIMENTS

This section includes some initial simulation experiments, where the simulator was used with a configu-
ration consisting of an area of 580 km2 (29 km by 20 km) using a resolution of 50 by 35 cells (0.3 km2
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(a) Remaining net nectar (mg) after 1st foraging trip.
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(b) Remaining net nectar (mg) after 3rd foraging trip.
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(c) Remaining net nectar (mg) after 6th foraging trip.
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(d) Remaining net nectar (mg) after 9th foraging trip.

Figure 3: Nectar depletion over four subsequent foraging trips during the same day by bees foraging in
three different flower patches. Dot in the centre represents the beehive. Squares represent a flower patch
section with the darker the colour the higher the amount of net nectar left.

per cell), with a single beehive of 15000 foraging bees at the centre, surrounded by the following 3 flower
patches with only one season each: i) 31 km2 to the east containing 10000 flowers with 80 mg with nectar
of 0.8 quality rate; ii) 2 km2 to the west containing 500 flowers with 200 mg with nectar of 0.7 quality
rate; and iii) 8 km2 to the north-east containing 5000 flowers with 100 mg of 1 quality rate.

Figure 3 offers a graphical view of how nectar is depleted along alternate foraging trips in an arbitrary day
where the average temperature was 25◦C with 12 hours of daylight, yielding 9 daily foraging trips. These
results show how bees will prefer to forage at closer distances as long as there is nectar available. It also
makes clear how bees will select food sources according to their net nectar (i.e. quality and quantity). In
consequence, the northern flower patch containing the best nectar is depleted sooner than the other two.

While the results are interesting and appear to concur with experience-based expectations, a scientific
evaluation of the accuracy of the overall predictions of the simulator will await future work using actual
observations.

5 CONCLUSIONS

This work presents a simulator of honeybee colony foraging behavior. In contrast to existing work, we
have designed a simulator suitable for covering long time periods and simulating honeybee responses to
local flora resources. The simulator has convenience and power that comes from being Web based. Its
simulation model stochastic and discrete in time. It is also explanatory, using well-established entomo-
logical knowledge encapsulated in four interrelated models. It can support any number of beehives and
floral patches over a two dimensional landscape of unrestricted size and user-selected resolution.
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In some follow-on work we will investigate ways to evaluate the accuracy and realism of the simulator
using actual observations of bee foraging. We will also extend the model to take account of the fact that
honeybees also forage for pollen as well as nectar and the mechanics are distinct. This is important for
applications to horticultural pests such as Fire Blight.
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