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Abstract: Although remotely sensed data have been widely explored for forest applications, passive 
remote sensing techniques are limited in their ability to capture forest structural complexity, particularly in 
uneven-aged, mixed species forests with multiple canopy layers. Generally, these techniques are only able to 
provide information on horizontal (two-dimensional) forest extent. The vertical forest structure (or the 
interior of the canopy and understorey vegetation) cannot be mapped using these passive remote sensing 
techniques. Fortunately, it has been shown that active remote sensing techniques via airborne LiDAR (light 
detection and ranging) with capability of canopy penetration yields such high density sampling that detailed 
description of the forest structure in three-dimensions can be obtained. Accordingly, much interest is attached 
to exploring the application of this approach for identifying the distribution of designated vegetation 
communities. However, the suitability of LiDAR data for the classification of forests with complex 
structures, particularly for cool temperate rainforest and neighbouring uneven-aged mixed forests in a 
severely disturbed landscape has hitherto remained untested.   

This study applied airborne LiDAR data for the classification of cool temperate rainforest dominated by 
Myrtle Beech (Nothofagus cunninghamii) and adjacent forests including naturally regenerated Mountain Ash 
(Eucalyptus regnans), mixed forest consisting of overstorey Mountain Ash and understorey Myrtle Beech, 
Silver Wattle (Acacia dealbata), and hardwood plantation dominated by Shining Gum (Eucalyptus nitens) in 
the Strzelecki Ranges, Victoria, Australia. LiDAR data were extracted within each of the forest plots. Non-
ground laser returns were used to generate forest height profiles for the analysis of the spatial distribution of 
vertical forest structure for the plots dominated by different forest types. The k-means clustering algorithm 
was performed on each of the plots to stratify the vertical forest structure into three layers, representing the 
overstorey, mid-storey and lower storey of the plot-level forests. Variables were then calculated from the 
LiDAR data based on the three-layered structure for each plot. The statistical analyses, which included one-
way ANOVA (analysis of variance) and the post hoc tests, identified effective variables for forest type 
classifications. Linear discriminant analysis with cross-validation was carried out to classify the forest types 
and assess the classification accuracy using error matrixes. This study demonstrated the applicability of 
airborne LiDAR for the classification of the Australian cool temperate rainforest and adjacent forests in the 
study area. 
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1. INTRODUCTION 

Forest type classification is part of decision support for sustainable forest management and native forest 
conservation (Koch et al., 2006; Brandtberg, 2007). The traditional methods for forest type classification 
were based either on an interpretation of large-scale aerial photographs or a field inventory work. These 
methods are labour intensive and time consuming (Franklin, 2001; Persson et al., 2002; Kim et al., 2009). 
Although remotely sensed data have been widely explored for forest applications, passive remote sensing 
techniques still fall short of capturing three-dimensional forest structures, particularly in uneven-aged, mixed 
species forests with multiple canopy layers (Lovell et al., 2003). Fortunately, it has been shown that active 
remote sensing via airborne LiDAR (light detection and ranging) with capability of canopy penetration yields 
such high density sampling from the top and interior of the canopy and understorey vegetation that detailed 
description of the forest structure in three-dimensions can be obtained (Popescu et al., 2002; Evans et al., 
2006). Accordingly, much interest is attached to exploring the application of airborne LiDAR data for 
identifying the distribution of designated vegetation communities. 

There has been increasing interest in the application of airborne LiDAR for the analysis for forest structures 
and the classification of forest type over the last decade (Popescu et al., 2002; Zimble et al., 2003; Goodwin 
et al., 2006; Ørka et al., 2009; Suratno et al., 2009; Vauhkonen et al., 2009; Korpela et al., 2010). The 
vertical distribution and configuration of the forest components are forest type dependent (Brandtberg, 2007). 
The structural differences will affect the distribution of the laser returns from the forests (Ørka et al., 2009). 
Therefore, variables that characterise the height distribution and density of the canopy can be generated from 
the LiDAR data and complementary field data, for tree species identification and classification (Næsset, 
2001; Heurich and Thoma, 2008; Korpela et al., 2010). The applications of LiDAR-derived variables for 
forest classification have been attempted for coniferous forests (Suratno et al., 2009), deciduous forest 
(Brandtberg, 2007), and mixed coniferous, deciduous and other forests (Moffiet et al., 2005; Heurich and 
Thoma, 2008; Holmgren et al., 2008; Ørka et al., 2009; Vauhkonen et al., 2009; Korpela et al., 2010). 
However, most of the above studies were carried out in open, conifer or deciduous forests of relatively 
homogenous structures. The suitability of LiDAR data for delineating the structure of complex forest types, 
particularly for cool temperate rainforest and neighbouring uneven-aged mixed forests in a severely disturbed 
landscape has hitherto remained untested. The overall objective of this study was to use airborne LiDAR data 
for the classification of the cool temperate rainforest and adjacent forests in the Strzelecki Ranges, Victoria, 
Australia. Specific objectives included the test of quantitative description of the vertical structure of the 
forests, compilation of LiDAR-derived variables within stratified layers, statistical analysis of the 
discriminatory power of the variables, classification of forest types and accuracy assessment. 

2. MATERIALS AND METHODS 

2.1. Study Area 

The study area (located at -38°54′ latitude and 146°30′ longitude) is in the Strzelecki Ranges, southeast 
Victoria, Australia. The Strzelecki Ranges are an isolated series of mountains in the southern section of the 
Gippsland region. Prior to European settlement the Strzelecki Ranges were occupied by the Ganai (Kurnai) 
and Wurundjeri indigenous tribes (Boyle and Lowe, 2004) and were densely vegetated by wet forest (also 
referred to as wet sclerophyll forest) and cool temperate rainforest. Wet forest is most commonly dominated 
by Mountain Ash (Eucalyptus regnans) (Davies et al., 2002), characterised by a tall eucalypt overstorey, a 
broad-leaved shrubby understorey and a moist, shaded, fern-rich ground layer that is usually dominated by 
tree-ferns (DSE, 2005). In eucalypt-free areas, Silver Wattle (Acacia dealbata) may be locally dominant 
(Davies et al., 2002). Cool temperate rainforest is defined as a closed, non-eucalypt forest, which occurs in 
high rainfall areas and within wet forest areas which have not been exposed to fire (Adam, 1992). Myrtle 
Beech (Nothofagus cunninghamii) is the dominant species of cool temperate rainforest in the study area. The 
understorey is characterised by tree ferns and a rich epiphytic flora including Soft Tree-fern (Dicksonia 
Antarctica), Slender Tree-fern (Cyathea cunninghamii) and Skirted Tree-fern (Cyathea X marcescens). The 
ground layer is dominated by a diversity of ground ferns such as Mother Shield-fern (Polystichum 
proliferum), Hard Water-fern (Blechnum wattsii) and Leathery Shield-fern (Rumohra adiantiformis) (Peel, 
1999; DSE, 2005). These forests have experienced widespread land clearing since European settlement. 
Subsequent agricultural abandonment and a significant fire history have resulted in severe landscape 
disturbance in the Strzelecki Ranges (Noble, 1978; Legg, 1986). Rainforest is sensitive to fire and, following 
fire, is often replaced by forest types comprising fire tolerant species such as some eucalypts, which rely on 
fire to open their protective seed pods so that their seeds can germinate (Reichl, 1966; Langkamp, 1987). For 
example, in the study area, there was extensive regeneration of eucalypt forest following catastrophic 
wildfires in 1939 and 1944. The landscape has undergone further significant changes with the establishment 
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of large scale plantations in the area over the last half of a century. Plantations include softwood species 
Radiata Pine (Pinus radiata) and hardwood eucalypts dominated by Mountain Ash (Eucalyptus regnans) and 
Shining Gum (Eucalyptus nitens) (HVP, 2010). Currently, areas bordering cool temperate rainforest in the 
Eastern Strzeleckis are a mosaic of different land use histories involving both natural and human 
disturbances, and so a very complex forest structure in the remnant patches of cool temperate rainforest and 
adjacent forests including wet sclerophyll and plantation forests prevails. This study focuses on an area with 
cool temperate rainforest distribution in the Eastern Strzeleckis, which covers an area of 1.82 km2 with 
elevations ranging between 322 metres and 448 metres.  

2.2. Data 

LiDAR data were collected using an Optech ALTM Gemini LiDAR system at a flying height of 1100 m 
between 11 and 23 October 2009. The laser scanner was configured to record up to four returns per laser 
pulse. The laser pulse repetition frequency was 70 kHz, with the average point density being 4 points per 
square metre. The laser footprint diameter at nadir was 0.3 m. The LiDAR data used for this project were 
documented as 0.20 m for vertical accuracy and 0.25 m for horizontal accuracy. The LiDAR data were 
classified into ground and non-ground points by the vendor and were delivered in binary LAS 1.2 file format. 

Ecological vegetation classes (EVCs), which describe the spatial extent of vegetation species, were provided 
by the HVP Plantations Pty Ltd. EVC mapping was undertaken first by the interpretation of aerial 
photographs and the process was designed to outline vegetation patches and any obviously related patterns. 
The range of aerial photograph patterns was then field checked (Davies et al., 2002; Boyle and Lowe, 2004). 
EVCs are the basic regional-scale mapping unit used for forest ecosystem assessments, biodiversity planning 
and conservation management in Victoria. For this study, EVC data (which include data on plantation 
forests) were used as reference data to establish the test plots. 

2.3. Methods 

Using the LiDAR ground data, a one-metre resolution DEM (digital elevation model) was generated by IDW 
(inverse distance weighted) method in ArcGIS 10 software for the study area. Based on the EVC reference 
data, a total of 70 plots (30 m × 30 m) were established. There were 14 plots for each of five forest types: 
cool temperate rainforest (RF), naturally regenerated Mountain Ash (MA), mixed forest (MF) consisting of 
overstorey Mountain Ash and understorey Myrtle Beech, Silver Wattle (SW), and hardwood plantation (PT) 
dominated by Shining Gum (Eucalyptus nitens). LiDAR data were extracted for each of the plots. The laser 
return height above the ground was calculated as the difference between the non-ground laser returns and the 
corresponding DEM value (Zhang et al., 2011). It was these normalised laser returns that were used for 
analysis of the spatial distribution of vertical forest structure for the plots dominated by different forest types. 
 
The k-means clustering algorithm, which produces a partition of the data into the k different clusters in such 
a way that all individuals in a cluster are closer to their own cluster mean (Burns and Burns, 2008), was 
performed on each of the plots to stratify the vertical forest structure into layers, representing the overstorey 
(layer 1), mid-storey (layer 2) and lower storey (layer 3) of the plot-level forests. Eighteen variables were 
then calculated from the LiDAR data based on the three-layered structure for each plot, six variables for each 
layer. The variable names and descriptions are listed in Table 1. 

The penetration rates were calculated by the following formula: 
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where, i = 1, 2 and 3, representing layer 1 (overstorey), layer 2 (mid-storey)  and layer 3 (lower storey); 4 
represents the ground; and n1, n2, n3 and n4 are the number of laser returns from layer 1, layer 2, layer 3, and 
the ground, respectively (Zhang et al., 2011). 

One-way ANOVA (analysis of variance), a statistical technique to test whether the observed differences 
between the sample means are of such magnitude as to indicate that they could have come from the same or 
different populations (Walford, 2011), was employed here to explore the possibility of distinguishing forest 
types using LiDAR-derived variables. In one-way ANOVA, the hypotheses to be tested for a variable are: 

H0: μ1 = μ2 = μ3 = μ4 = μ5 (the means of a variable from the five forest types are equal) 
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H1: at least one mean is different from the others. 

The p-value in an F-statistic for the one-way ANOVA test of H0 is P(F < Fdf1, df2), where df1 and df2 are the 
degrees of freedom and are equal to 4 and 65 in this study (5 forest types and 70 plots); Fdf1, df2 is the F-
critical value with the degrees of freedom df1 and df2, and F is the observed value of the F-statistic (Cabrera 
and McDougall, 2002). For a given significance level, usually at α = 0.05 level (so-called at 95% confidence 
level), the F-critical value is the F value above which 100α% of the null sampling distribution occurs 
(Seltman, 2010). Consulting the F-distribution table with 4 and 65 degrees of freedom, the F-critical value at 
α = 0.05 level was obtained as 2.519. To retain the null hypothesis at 95% confidence level, the F value must 
be less than 2.519. For any one of the LiDAR-derived variables, if the F value is greater than 2.519 (the P-
value is less than α), the null hypothesis will be rejected. This indicates that for this variable, at least one 
mean differs from the others. In other words, at least one forest type can be distinguished from the other 
forest types by these LiDAR-derived variables. 
 

Table 1.  Variables and description (i = 1, 2 and 3, representing the overstorey, mid-storey and lower storey) 

Variable Description 

MaxHi Maximum height of the layer i  

Depthi Depth (or extent) of the layer i 

MeanHi Mean height of the layer i 

StdDevi Standard deviation of heights of laser returns within the layer i 

Densityi 
Ratio of the number of laser returns in the layer i to the total number of laser 
returns within the plot  

Penetrationi Penetration rate through the layer i 
 

The post hoc Tukey HSD (honestly significant differences) test (Burns and Burns, 2008) was carried out to 
identify which specific pairs of forest types could be discriminated for a specific variable. For each variable, 
the post hoc tests compared all different combinations of paired forest types to identify which forest type was 
significantly different from the other based on the following hypotheses: 

H0: the two means are equal 

H1: the two means are not equal. 

The results from the post hoc test were used to evaluate the significance of variables for the discrimination of 
forest types (Suratno et al., 2009; Seltman, 2010). Linear discriminant analysis with cross-validation was 
performed to classify the forest types and assess the classification accuracy. The cross validation, often 
termed a jack-knife classification (Burns and Burns, 2008), successively classifies all forest plots but one to 
develop a discriminant function and then categorizes the plot that was left out. This process was repeated 
with each plot left out in turn (Burns and Burns, 2008). 

3. RESULTS AND DISCUSSION 

Figure 1 shows examples of plot-based height profiles (one for each forest type), depicting the tree heights 
and the vertical distribution of the laser returns at 1-m height intervals. The rainforest plot has maximum tree 
heights of about 30 m. The mountain ash forest has trees with maximum heights of nearly 60 m. The mixed 
forest shows the bimodal height distribution reflecting the taller mountain ash trees above the rainforest trees. 
The plantation forest shows a lower height distribution than the mountain ash forest. In terms of the variation 
of frequency (the number of the laser returns at different heights), the profiles of all five plots are 
characterised by a three-layered vertical structure. The k-means clusters stratified the vertical structure to 
three layers as shown in Figure 1, representing overstorey, mid-storey and lower storey. 

The F-statistics and p-values for all variables from the one-way ANOVA at α = 0.05 level are shown in Table 
2. All the F-values are greater than the F-critical value 2.519 and p-values are less than 0.05. Therefore, the 
null hypotheses for all 18 variables were rejected. The results of the one-way ANOVA test revealed that at 
least two of the forest types can be discriminated from each other if using any one of the 18 variables. In the 
post hoc tests, the variables MaxH, MeanH and Density in the overstorey, MaxH, Depth, StdDev and 
Penetration in the mid-storey and MeanH, Density and Penetration in the lower storey were found to be 
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significantly different between one forest type and at least other two types. Therefore, the combination of 
these 10 variables exhibited the most discriminatory power.  

 

Figure 1. Examples of plot-based height profiles (one for each forest type), showing the height distribution 
of the laser returns within the forest plot at 1-m height interval. The k-means clusters stratified the vertical 
structure into three layers, with the horizontal lines in the profiles showing the boundary between the layers. 
 

Table 2. F-statistics and p-values from LiDAR-derived variables from one-way ANOVA at α = 0.05 level. 

Variables: MaxH Depth MeanH StdDev Density Penetration 

Overstorey F  96.879  26.781  65.861  28.642  20.190  14.443 

p-value    < 0.001     < 0.001    < 0.001    < 0.001    < 0.001   < 0.001 

Mid-storey F  49.833  67.726  21.330  52.796  34.124  28.498 

p-value   < 0.001     < 0.001    < 0.001    < 0.001    < 0.001    < 0.001 

Lower Storey F   5.769   5.216  16.885    4.323  16.434  43.115 

p-value   < 0.001    < 0.001    < 0.001    < 0.001    < 0.001    < 0.001 
 

 

Table 3. Classification results by the linear discriminant analysis using the ten variables as identified from 
the post hoc tests for different forest types. 

  Forest types  

  RF MF SW MA PT Row Total User’s Accuracy

Classified 

forest types 

RF 11 0 3 0 0 14 78.6%

MF 0 14 0 0 0 14 100%

SW 3 0 11 0 0 14 78.6%

MA 0 0 0 14 0 14 100%

PT 0 0 0 0 14 14 100%

Column Total 14 14 14 14 14 70 

Producer’s Accuracy 78.6% 100% 78.6% 100% 100%  

Overall Accuracy = (11+14+11+14+14)/70 = 91.4% 

 

The results of linear discriminant analysis using the 10 variables identified as important during the post hoc 
tests are shown in Table 3, which is referred to as a classification error matrix (also known as a confusion 
table) showing the number of forest plots correctly and incorrectly assigned to each of the forest types based 
on the discriminant analysis (Burns and Burns 2008). The results showed that 100% of the plots dominated 
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by mixed forest, mountain ash and plantation were correctly classified in both the original and the cross-
validated classification results. These three forest types can be easily identified using the selected LiDAR-
derived variables. Rainforest and silver wattle forest were relatively difficult to distinguish using the linear 
discriminant analysis, with up to three plots of each types being misclassified, showing 78.6% for both 
producer’s accuracy and user’s accuracy. The overall results are very good, showing an overall classification 
accuracy of 91.4%. 

Unlike the interpretation of aerial photographs (which see forests only from above the overstorey) and field 
identification using the floristic keys (which see forests from the ground), airborne LiDAR data used in this 
study provide detailed information not only from the top of the canopy, but also through the interior of the 
canopy including the mid-storey and the lower storey, and the ground because of the LiDAR penetration of 
forest canopies (Zhang et al., 2011). This study demonstrated the applicability of airborne LiDAR for the 
classification of Australian cool temperate rainforest and adjacent forests. LiDAR technology has advantages 
over traditional methods in forest type classification. Statistical analyses showed that the LiDAR-derived 
variables have significant discriminatory power to distinguish between forest types. Given that the historical 
and ecological significance of cool temperate rainforest in Victoria, Australia is such that endangered EVC 
status has been bestowed, these results are of practical importance. Rainforests in Victoria are protected from 
the impacts of timber logging through the use of appropriate buffers to maintain microclimatic conditions and 
protect from disease and other disturbance. It is here that boundaries between rainforest and adjacent forests 
must be well positioned and monitored so that buffer zones requisite for effective rainforest conservation and 
protection can be agreed upon (Cameron, 2008). In addition, vertical description of the forest structure is 
essential to study biological diversity, microclimate, ecological processes, succession, and the history of 
natural and anthropogenic disturbances of the landscape. Therefore, there will be great potential for 
applications of LiDAR data in sustainable forest management and native forest conservation. 

4. CONCLUSION 

This study used airborne LiDAR data to describe the vertical structure of forests in one of the cool temperate 
rainforest areas in Victoria, Australia and tested the capability of LiDAR-derived variables for distinguishing 
and classifying cool temperate rainforest and neighbouring forest types. Using laser point data normalized by 
ground elevation in this study, the forest structure was stratified into layers representing the overstorey, mid-
storey and lower storey of the forests within each plot. The variables derived from the LiDAR data were 
based on each of these layers rather than on each level with a predefined height interval. These variables are 
found to be effective in characterising the vertical structure of the forests examined. Statistical analyses 
including one-way ANOVA and the post hoc tests were used to evaluate the significance of variables for the 
discrimination of forest types. Using linear discriminant analysis with the cross-validation, an overall 
classification accuracy of 91.4% was achieved in the study area. 
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