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Abstract: When selecting a time series model for a particular application it is appropriate to consider
properties of the series under consideration. For example, it is not appropriate to apply standard autore-
gressive models to time series showing irreversibility, a feature observed in environmental series showing
feedbacks. Models considered more suitable for modelling irreversible time series include Self-Exciting
Threshold AutoRegressive (SETAR) models; a class of model composed of two or more regimes where
the prediction equation used at a particular time is determined by some combination of previous time
series values.

In certain applications SETAR models are not able to reproduce rapid changes observed in series, as
observed in the Burgundy Spring-Summer temperature anomaly series reconstructed from grape harvest
dates [Chuine et al., Nature 432 (2004)]. To address this limitation, SETAR modified to have a regime
capable of unstable behaviour flanked by two stable regimes are considered. One potentially suitable
model class for the unstable middle regime is a mildly explosive model (MEM), an AR(1) model with a
parameter greater than one which decays monotonically over time permitting unstable behaviour. MEM
have found use in modelling financial exuberance and informed “collapsing bubble models” used to
model rapid changes in the NASDAQ index. The SETAR class modified to have a MEM middle regime
is termed here a MEMTAR.

As an aid to evaluating the properties of a series, either historical or model derived, some descriptors
of time series behaviour are proposed. These descriptors aim to detect a lack of directional symmetry
in a series and inform the choice of model for a given application. A simulation study is used to obtain
descriptors of values from a SETAR and a MEMTAR which each had an unstable order one autoregressive
middle regime; a random walk for the SETAR and a less explosive version of a MEM for the MEMTAR.
The simulation exercise results show that the MEMTAR tended to take extreme values more readily than
the SETAR, suggesting the MEMTAR is worth further consideration.

SETAR and MEMTAR models composed of autoregressive processes of orders one to three are applied
to annual sunspot data from 1700 to 1988 and the reconstructed Burgundy temperature series of Chuine
et al. from 1370 to 1977. Results are compared with those obtained from fitting standard autoregressive
models. Results show that SETAR and MEMTAR models improve upon the ability of autoregressive
models to model peak values.

Keywords: Mildly explosive model, self-exciting threshold autoregressive model, directional time series,
Burgundy reconstructed Spring-Summer temperature anomaly, Wolf’s annual sunspot data.
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1 INTRODUCTION

When modelling a phenological series, it is appropriate to assess properties of the series to ensure that
an appropriate model is used. Of particular importance is directionality (or irreversibility), a property
ascribed to a time series by Lawrance [1991] if “... it possesses probabilistic properties which depend on
the direction of time.” A time series that does not have the property of irreversibility is termed reversibile.
Plots of a time series may reveal directionality by highlighting what Lawrance calls “a lack of directional
symmetry in certain characteristic behaviour sequences, such as rises and falls.” A noted example is
Wolf’s annual sunspot data (obtainable from Hyndman [n d]) in which the series rises to peak values at a
greater rate than the rate of decay from the peak.

Lawrance [1991] asserted that when historical data show directionality it is not appropriate to make
predictions with a model unable to reproduce this feature, such as a Gaussian autoregressive moving av-
erage model. A variety of more appropriate models were suggested, including threshold models (Tong
[1995]). This category includes Self-Exciting Threshold AutoRegressive (SETAR) models; a class of
model composed of two or more autoregressive regimes where the prediction equation used at a given
time is determined by the value of some combination of previous values in the time series. These models
have the appeal that the model is capable of adaptation to prevailing conditions and hence appears better
suited to modeling systems showing feedback behaviour. An extension of the SETAR class is Threshold
AutoRegressive models with eXogenous input (TARX) which have found use in particular use finan-
cial applications and recently in rainfall-runoff modelling through a study of daily runoff in Australia’s
Murray–Darling Basin using daily rainfall as the exogenous input (Whyte et al. [2011]). The authors’ use
of TARX models in rainfall-runoff modelling and SETAR models in modelling daily maximum tempera-
ture data in South Australia (unpublished study in progress) has demonstrated that frequently the models
cannot adequately reproduce extreme values in the time series. This paper proposes a modification to
SETAR models intended to address this limitation.

The SETAR model class has fixed coefficients, ensuring that a regime exhibits a particular behaviour for
all time. Relaxing this condition allows time-varying behaviour, such as a model capable of a degree of
unstable behaviour which is able to change over time. This paper considers variants on the class of three
regime SETAR models in which an autoregressive model displaying unstable behaviour is flanked by two
stable models, ensuring stability overall. This unstable regime is realized by adapting a mildly explo-
sive model (MEM) (Phillips and Magdalinos [2004]), a model class which has found use in modelling
financial exuberance and the ensuing collapse of the NASDAQ bubble. The SETAR with MEM middle
regime is termed here a MEMTAR; its design is intended to improve upon the SETAR’s ability to model
the rapid rises and falls seen in phenological series such as the reconstructed Burgundy Spring-Summer
temperature data (Chuine et al. [2004]).

This paper is structured as follows. Section 2 defines the models under consideration, defines some mea-
sures of time series behaviour which are used subsequently to compare model predictions and introduces
the data used for case studies. Section 3 describes the conditions of the simulation study used to collect
information on the behaviour of the SETAR and MEMTAR models. Various orders of autoregressive
models, SETAR and MEMTAR are fit to time series data and results are discussed in Section 4. Conclu-
sions are drawn in Section 5.

2 PRELIMINARIES

2.1 Notation

τL and τU : lower and upper thresholds respectively with −∞ < τL < τU <∞.
E[X] and Var[X]: the expected value of random variable X and the variance of X respectively.
N(µ, σ2): the univariate normal distribution with mean µ and variance σ2.
Lap(l, s): the Laplace distribution with location parameter l and scale parameter s.
Exp(λ): the exponential distribution with rate λ, having cumulative distribution function F (·), where
F (x) has support for x ≥ 0.
TExp(λ, c): the translated exponential distribution with rate λ, having cumulative distribution function
F́ (·) defined by F́ (x− c) = F (x), giving F́ (x) support for x ≥ −c.
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2.2 Mathematical models

AR(p) models. A scalar sequence {yt} is an autoregressive process of order p (AR(p) process) if suc-
cessive values are related by

yt = α1yt−1 + · · ·+ αpyt−p + εt, t ≥ p+ 1, E[εt] = 0, Var[εt] = σ2, αp 6= 0, (1)

where the noise terms {εt}nt=p+1 are white noise, that is, independently and identically distributed.

If an AR(1) process (defined by (1) with p = 1) has |α1| ≥ 1 the resulting process is termed unstable,
otherwise it is stable. An AR(1) process with α1 = 1 is unstable and is termed a random walk.

Variations on AR(p) models. We consider variations on AR(1) processes in which α1 is replaced by
a time varying term α1t which allows periods of unstable behaviour. Unstable behaviour is promoted by
taking α1t |t=1 > 1 and allowing α1t to decay towards one as time progresses. This behaviour is captured
by the model

yt = α1tyt−1, t ≥ 2, where α1t = 1 +
c

kt
, c > 0,

where {kt}∞t=1 is a sequence of positive values that tends to infinity more slowly than t does.
(2)

Taking kt ≡ tδ for δ ∈ (0, 1) leads to the form of (2) known as a mildly explosive model (MEM) (Phillips
and Magdalinos [2004]). The case where δ = 1 is a less explosive version of a MEM as the coefficient
decays more quickly.

Self-exciting threshold autoregressive (SETAR) models. Our model is similar to the open-loop
threshold autoregressive systems given in Tong [1995, Page 101]. For a SETAR of three regimes used to
model yt, three prediction equations are available. Define y

[p]
t ≡ {yt−1, . . . , yt−p} for t > p. The three

regime SETAR of interest here predicts yt depending on the value of yt−1 according to

yt =


f [L](y

[pU ]
t ) + εt, yt−1 < τL,

f [M ](y
[pM ]
t ) + εt, τL ≤ yt−1 < τU ,

f [U ](y
[pL]
t ) + εt, yt−1 ≥ τU ,

t > max(pL, pM , pU ), (3)

where L, M and U denote the lower, middle and upper regimes consisting of autoregressive processes
as in (1) having order pL, pM and pU respectively. These regimes are defined by τL and τU . A random
noise term at time t is denoted by εt. The case of (3) having pL = pM = pU = p is henceforth referred
to as SETAR(p) and has 3p parameters.

The SETAR template (3) is used subsequently to define some specific cases and variants having a middle
regime capable of unstable behaviour.

SETAR models with unstable middle regime. Consider data {yt}nt=1. For a SETAR(1) defined by (3)
with lower and upper regimes described by stable AR(1) models

f [i](y
[1]
t ) = β

[i]
1 yt−1,

∣∣β[i]
1

∣∣ < 1, i = L,U, (4)

unstable behaviour of the middle regime is achieved in two ways. The first choice is the random walk,
((1) with p = 1 and α1 = 1),

f [M ](y
[1]
t ) = yt−1. (5)

The second choice uses the mildly explosive model (2) as the middle regime giving a model termed here
a MEMTAR. The mildly explosive model of (2) is adapted such that the time-varying coefficient returns
to its initial value after each entry of the process into the region between the thresholds and decays if the
process remains in this region. Defining the setM≡ {x ∈ R|τL ≤ x < τU}, then the set of time points
when the middle regime is first used for predictions is

T ∗ ≡ {t ∈ {2, . . . , n} |yt ∈M and yt−1 6∈ M} , (6)
and the last time point spent by the process between the two thresholds following entry time t∗ is
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t†(t∗) ≡ min
t
{t ∈ {t∗, . . . , n} |yt ∈M and yt+1 6∈ M} . (7)

Hence given t∗ ∈ T ∗, the middle regime of (3) is used to make predictions for t∗ + 1 ≤ t ≤ t†(t∗) + 1.
Recalling (2), we use kt = tδ , 1 ≤ t ≤ n, δ ∈ (0, 1], and hence the middle regime of a MEMTAR models
yt for some period beyond t∗ ∈ T ∗ by

f [M ](y
[1]
t ) = β

[M ]
1t

yt−1, where β[M ]
1t

= 1 +
c

k(t−t∗)
, c > 0, t∗ + 1 ≤ t ≤ t†(t∗) + 1. (8)

A MEMTAR which is a SETAR with pL = pU = p and middle regime given by (8) is henceforth termed
MEMTAR(p; δ) and has 2p+ 1 parameters.

Outline of model fitting process. All model fitting is implemented in R [The R Project for Statistical
Computing]. The setar() function (Di Narzo [2010]) fits a SETAR to data given various features of the
model. This paper considers the SETAR(p) version of (3). Model parameters are estimated by solving a
series of conditional least squares problems. For fixed values of the upper and lower thresholds, model
parameters are estimated by independently minimizing the squared residuals that arise for predictions
made for the upper, lower and middle regimes. A grid search over feasible values for the upper and lower
thresholds finds the thresholds and associated parameters that minimize the total residual sum of squares.

The R program devised for fitting a MEMTAR to data is similar to the process used for fitting a SETAR
as it is necessary to search over all feasible combinations of upper and lower thresholds. At this stage
the fitting routine finds the best fit of a MEMTAR(p, δ) to data given the p and δ. Parameters for the
upper and lower regimes are estimated by determining the least squares estimate of the linear model used
however it is necessary to treat the middle regime differently.

Expressing (8) as

f [M ](y
[1]
t ) = yt−1 + c

yt−1
k(t−t∗)

, t∗ + 1 ≤ t ≤ t†(t∗) + 1 (9)

suggests fitting (9) to data by performing a linear regression of yt against explanatory variables yt−1 and
yt−1/k(t−t∗). This is achieved in R through using the lm() function to relate yt to yt−1/k(t−t∗) with an
“offset” term yt−1.

Fitting of AR(p) models (1) to data is by the ar() function with model fitting by minimizing ordinary least
squares.

2.3 Some descriptors of time series behaviour

Definition 1. Consider a sequence {yt}nt=1 and fixed values τL < τU termed the lower and upper
thresholds respectively. An upper (lower) sojourn of a process is defined from the time the process first
crosses above the upper threshold (below the lower threshold), tF , up to and including the last time point
for which the process remains above (below) the threshold, tL. The sojourn is either for a single time
point or for a time interval. The largest peak (smallest trough) that occurs for tF ≤ t ≤ tL is called
extreme value E, defined to occur at time tE . Some descriptors of this sojourn are:
Upper (Lower) sojourn time from Entry to Extreme value (UEE/LEE): tE − tF ≥ 0.
Upper (Lower) sojourn time After an Extreme value (UAE/LAE): tL − tE ≥ 0.
Upper (Lower) Sojourn Time (UST/LST): (tL − tF ) + 1 ≥ 1.

Consider the collections of upper sojourns and lower sojourns of the time series independently to obtain
the distributions of the descriptors described in Definition 1 in each case. We propose that differences
between the distributions of descriptors provide measures of directionality in the time series. For example,
differences in UEE and UAE distributions suggest that a series has different behaviour when climbing to
peaks compared to when descending from peaks.

2.4 Data

Wolf’s annual sunspot numbers for 1700 to 1988 (file SUNSPOT.DAT obtained from The Time Series
Library Hyndman [n d].) provides a well-known example of a directional time series and a test for the
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descriptors proposed in Definition 1. Also considered is the series of temperature anomalies for the period
1370 to 2003, defined relative to the April to August mean temperature of Dijon between 1960 and 1989.
This series was reconstructed using grape harvest dates in Burgundy Chuine et al. [2004]. This study
used the series from 1370 to 1977 to avoid a missing value towards the end of the series.

Initial consideration of the data. The autocorrelation function (ACF) of the sunspot data showed pe-
riodic behaviour. To reduce this feature of the time series {xt}nt=1, a linear model featuring harmonic
terms of period T = 11 years given by

xt = β0 + β1 cos

(
2πt

T

)
+ β2 sin

(
2πt

T

)
. (10)

was fitted to the time series. Inspection of the ACF for the residuals obtained showed that the periodic
behaviour was substantially reduced and this series is subsequently referred to as the deseasonalized
sunspot series. The ACF of the Burgundy temperature data did not show substantial periodic behaviour.

Directionality of each time series was investigated by taking the lower and upper thresholds as the first
and third quartiles of the data respectively and considering the descriptors proposed in Section 2.3. For
the deseasonalized sunspot data the UEE distribution showed lower values than the UAE distribution,
agreeing with asymmetry reported for the series in the introduction. The Burgundy temperature data had
a relatively small number of upper and lower sojourns, but given this it appeared that the time spent on
lower excursions (LST) was generally shorter than that spent on upper excursions (UST) and that the time
spent climbing to a peak (UEE) was shorter than that spent descending from a peak (UAE).

3 A SIMULATION STUDY OF THRESHOLD MODELS WITH UNSTABLE MIDDLE REGIME

Values from the threshold models with an unstable middle regime introduced in Section 2.2 are simulated
so that descriptors of the simulated series described in Section 2.3 are computed and compared.

3.1 Overview of simulation conditions and models

Output is simulated from each model with stable AR(1) upper and lower regimes described by (4) with
β
[L]
1 = β

[U ]
1 = 0.9. The simulation uses symmetric thresholds τL = −4 and τU = 4 and starts from

y1 = 0. Distributions used to generate noise are N(0, 1), Lap(0, 1/
√

2) and TExp(1,−1), which all have
mean zero and standard deviation one. For each source of noise, 104 model values are simulated and the
same random seed is used.

The SETAR(1) with random walk middle regime defined by (5) has β[M ]
1 = 1. For the MEMTAR(1;1)

the middle regime is described by (8) with c = 0.01 and kt = t/5.

3.2 Simulation results and comparison of model behaviour

For all three sources of noise, the MEMTAR(1;1) showed a larger number of both lower and upper so-
journs than the SETAR(1), the number of extra upper and lower sojourns depended on the noise distribu-
tion. It was decided to pair a particular upper descriptor and its corresponding lower descriptor (eg. UEE
and LEE) from the SETAR(1) with those of the MEMTAR(1;1) and consider the results by noise type
using boxplots of the distributions. For most descriptors and a given noise type, the comparison did not
show any difference between the distributions from the first to the third quartile. The notable exception
to this finding is in the case of Laplace noise where the MEMTAR(1;1) UEE distribution has a smaller
median and third quartile than that of the SETAR(1), suggesting that the MEMTAR(1;1) generally spends
less time above the upper threshold than does the SETAR(1). This behaviour is shown in Figure 1.

The simulation study has shown that the MEMTAR(1;1) is able to reach values further from zero more
frequently than the SETAR(1) with a random walk middle regime. We propose that MEMTAR with
δ ∈ (0, 1) is capable of an even greater degree of unstable behaviour and hence is worth investigating as
an alternative to the existing SETAR class.
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Figure 1. Boxplots of UAE and LAE obtained by simulations using Lap(0, 1/
√

2) noise for the SETAR
with random walk middle regime (left) and the SETAR with a moderate deviation from unity middle
regime with c = 0.01 and kt = t/5 (right). The value n is the number of lower or upper sojourns as
appropriate.

4 MODELLING OF PHENOLOGICAL TIME SERIES

Autoregressive models, AR(p), SETAR(p) and MEMTAR(p; δ) of orders one to three were fit to the
deseasonalized sunspot series (Table 1) and the Burgundy temperature series (Table 2) noting the variance
of residuals (σ2

R). For the sunspot data, the σ2
R determined for AR(p) models with p = 3, 4, 5 did not

improve on σ2
R obtained for the AR(2) model. For the temperature data the σ2

R observed for fitting AR(p)
models with p = 3, 4, 5, 6 did not improve on σ2

R obtained for the AR(2) model. The results for the
temperature series show that a MEMTAR(1,1) produces a fit to data that is comparable to the SETAR(1)
and better than the AR(3) for the same number of parameters.

Fitting of the SETAR(p) and MEMTAR(p, δ) models for p = 2, 3 resulted in very few points modelled by
the middle regime. This may in part explain why the variance of residuals does not decrease substantially
in going from p = 2 to p = 3.

Inspection of plots of fitted values superimposed on the data indicates that MEMTAR and SETAR models
show an improvement in modelling of peak values compared to the autoregressive models (1) of the same
or greater order.

For p = 2, 3 the SETAR model shows better performance than the MEMTAR of the same order. This is
possibly because the SETAR(2,δ) has one more parameter and the SETAR(3,δ) two more parameters than
the MEMTAR of the same order. It may also be the case that given the more extreme values produced the
the MEMTAR(p; δ) for p = 2, 3 compared to the MEMTAR(1;δ) that the middle regime is too explosive,
overpredicting values in the time series. This would inflate the residual sum of squares determined for
the middle regime and cause the model fitting routine to choose values of the upper and lower thresholds
that are as close together as possible to minimize this effect.

5 CONCLUSIONS AND RECOMMENDATIONS

The MEMTAR(1,1) model improves upon the performance of AR(3) and SETAR(1) models in modelling
the series considered as it produces a smaller variance of residuals. At this point R code for fitting
MEMTAR models does not search over δ values and hence it is possible some improvement in MEMTAR
performance will result from implementing this feature.
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Table 1. Variance of residuals (σ2
R) arising from fitting selected autoregressive models to sunspot data.

p AR(p) MEMTAR(p; δ) SETAR(p)
δ = 0.5 δ = 1

1 388.7 370.2 367.2 380.4
2 258.3 249.0 249.0 231.9
3 258.3 247.8 247.8 225.0

Table 2. Variance of residuals (σ2
R) to three decimal places arising from fitting selected autoregressive

models to Burgundy reconstructed temperature data.

p AR(p) MEMTAR(p; δ) SETAR(p)
δ = 0.5 δ = 1

1 0.886 0.858 0.856 0.866
2 0.882 0.859 0.859 0.852
3 0.882 0.840 0.835 0.826

The current MEMTAR class has the same middle regime behaviour regardless of whether the process en-
ters the region between the two regimes from above the upper threshold or below the lower threshold. As
processes may exhibit differing behaviour depending on whether they have an increasing or decreasing
trend, some refinement to the MEMTAR may be appropriate to allow the middle regime to make predic-
tions from time t∗ that depends on whether the yt∗−1 is greater than the upper threshold or less than the
lower threshold.
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