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Abstract:   The water and energy fluxes at the land-atmosphere interface depend heavily on the soil moisture 
content, which imposes a significant control on evaporation, infiltration and runoff. Nonetheless, temporal 
soil moisture evolution is not easy to measure or monitor at large scales due to its spatial variability, which is 
largely driven by the local variation in soil properties and the vegetation cover. As a consequence, soil 
moisture dynamics are generally estimated using land surface models, with model physics based on low-
resolution soil property maps, which may include significant errors due to their underpinning information and 
spatial scale. Consequently, there is a need for more accurate and detailed soil parameter data sets than are 
currently available in order for the model to perform reliably.  

There are a large number of land surface models with a range of characteristics and model physics. This 
paper presents an assessment of the soil hydraulic parameter retrieval capability from calibration to surface 
soil moisture observations using two prominent land surface models, the Community Atmosphere Biosphere 
Land Exchange (CABLE) model and the Joint UK Land Exchange Simulator (JULES). A synthetic twin 
experiment was used to achieve the objective of identifying the most suitable of these land surface models to 
be used in soil hydraulic parameter retrieval using near-surface soil moisture data. This study was conducted 
in three steps: (a) identifying the soil parameters to which the soil moisture shows the greater sensitivity,  
(b) assessing the capability of the land surface model to allow the retrieval of identified parameters, and  
(c) assessing the ability of the model to simulate real conditions.  

A range of sensitivity studies were performed for both the CABLE and JULES land surface models using the 
parameter sensitivity index (S) to identify the model parameters with the highest impact on soil moisture 
prediction. Having identified the key parameters, a set of assumed ‘true’ parameter values were prescribed 
for calculating ‘true’ soil moisture dynamics. Those parameters found most sensitive to surface soil moisture 
observations were then changed to 'best guess’ values, and subsequently retrieved by optimizing the surface 
soil moisture predictions against those from the 'truth run' using the Parameter ESTimation (PEST) software. 
Parameter retrieval capability was assessed for both land surface models based on comparison with the ‘true’ 
soil parameters and deeper layer soil moisture. 

Compared to field observation data, both models captured the wetting and drying trends of the real-world 
scenario, but over-estimated the soil moisture after wet-up periods and under-estimated the moisture for 
deeper layers. However, JULES showed greater sensitivity to changes in the soil hydraulic parameters when 
compared to CABLE. Moreover, an unrealistic value for the volume of water at wilting point, in the form of 
the observed lowest soil moisture, had to be used as an input parameter for CABLE to simulate sensible soil 
moisture. It is also important to note that in contrast to CABLE, JULES has been formulated to allow depth 
varying soil parameter data to be assigned to different soil layers with the added flexibility of allowing the 
user to vary the number of soil layers and their depths. It was therefore concluded that the JULES model is 
better suited for the long-term work of retrieving soil hydraulic parameters from surface soil moisture 
observations. 
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1. INTRODUCTION 

The water and energy fluxes at the land-atmosphere interface depend heavily on the soil moisture content, 
which imposes a significant control on evaporation, infiltration and runoff. Moreover, the rate of water 
uptake by vegetation in the vadose zone is regulated by the soil moisture content since soil, besides providing 
nutrients for plant growth, serves as a reserve for the moisture that plants require. Soil moisture plays an 
essential role in most scientific disciplines related to environmental sciences. However, the problem is that 
soil moisture evolution is not easy to monitor on large scales, and although remote sensing techniques have 
been shown useful in soil moisture detection with passive microwave observations at L-band (Paloscia et al., 
1993), there is still a great reliance on the prediction of soil moisture evolution using land surface models.  

Land surface models are used to provide a boundary condition to climate models, representing the 
interactions between the land surface and the atmosphere. Consequently the land surface model must predict 
the radiation, water, heat and carbon exchanges, with explicit representation of vegetation and soil types. 
These models generally require meteorological forcing data and parameters of vegetation and soil 
characteristics as inputs (Abramowitz et al., 2007). Paloscia et al. (1993) describe the two modeling 
approaches that can be used in estimating the water balance of the Earth’s surface as; i) precise yet complex 
models and ii) simple but crude models. However, both approaches require accurate soil hydraulic parameter 
information that is spatially representative. The most straightforward method of obtaining soil hydraulic 
parameters is in-situ measurements, but because of their time consuming nature and the expenses involved, 
pedotransfer functions are mostly used (Wösten, 1997; Wösten et al., 2001). Extrapolation over large areas 
(Vereecken et al., 1989) yields crude estimates of soil hydraulic properties with large standard deviations, the 
accuracy of which deteriorates with the extent of the extrapolation, and hence the accuracy of the model 
simulations. Remote sensing techniques, using satellite and airborne sensors which are able to supply a long 
time series of data over wide areas, offer a novel approach to the estimation of soil hydraulic properties with 
high spatial resolution. Virtual studies by Montzka et. al (2011) have demonstrated the potential to both 
correct the model states and estimate soil hydraulic parameters using near-surface soil moisture observations 
with different temporal resolutions. A significant conclusion from their study was that the 3-day overpass that 
the Soil Moisture and Ocean Salinity (SMOS) mission provides should be able to correct the biases resulting 
from erroneous soil hydraulic parameters and thus reduce their uncertainty. This is an important finding as 
the long-term objective of the study presented here is to retrieve soil hydraulic parameters using the remotely 
sensed surface soil moisture information from the SMOS mission, by harmonizing model simulations with 
observed surface soil moisture data. 

As a first step, this study focuses on two prominent land surface models used in climate forecasting, the 
Community Atmosphere Biosphere Land Exchange (CABLE) model (Abramowitz, 2006; Kowalczyk et al., 
2006) and the Joint UK Land Environment Simulator (JULES) model (Clark and Harris, 2009; Best et al., 
2011; Clark et al., 2011), with the objective of studying the capability of each model to allow the retrieval of 
the most critical parameters. The intent of this work was to maintain the community version of the models, 
and hence the original program codes were not modified. Of the many parameters used as inputs in these 
models, the interest here was on the parameters that defined the soil properties. While it would be ideal to 
retrieve all soil parameters, this is not practical for several reasons. For example, some parameters play a 
more direct role in soil temperature simulation than on soil moisture and the large number of parameters used 
by land surface models presents an equifinality issue. Moreover, the influence of some parameters on soil 
moisture simulation is comparatively higher than others. Hence, studies were conducted to identify the 
parameters to which the soil moisture simulation showed the most sensitivity.  

2. MODEL DESCRIPTION 

2.1. Joint UK Land Environment Simulator – JULES  

The Joint UK Land Environment Simulator is a multi-layered model with the capability of simulating the soil 
moisture and soil temperature at time steps of 30 or 60 minutes. JULES consists of four sub-models, soil, 
snow, vegetation and radiation. Of these, the focus in this paper is on the soil sub-model and the simulation 
of soil moisture. By default, JULES is run with four soil layers of 0.10 m, 0.25 m, 0.65 m and 2.0 m 
thickness, totaling to an overall depth of 3.0 m. However, both the number of layers and their thickness can 
be varied by the user; the parameters and initial conditions for each of the specified soil layers also need to be 
specified. Although the Richard’s equation is used in the calculation of soil moisture, there is a choice of 
using either of two commonly used constitutive relationships; Brooks and Corey (1964) or van Genuchten 
(1980). Dharssi et al. (2009) have shown that, with suitable parameter values, both relationships yield similar 
results for the soil moisture retention curve over most of the soil moisture range, but that the relationship 
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between the hydraulic conductivity and the soil moisture are different. Hence, throughout the following 
work, the Brooks and Corey relationship has been used as its parameters can be related to the Clapp and 
Hornberger parameters required by CABLE. To conform to the CABLE model, the number of layers in 
JULES was set to six with the depths identical to CABLE. Additional information about the model and its’ 
physics can be found in Clark and Harris (2009), Best et al. (2011), and Clark et al. (2011). 

2.2. Community Atmosphere Biosphere Land Exchange – CABLE   

The Community Atmosphere Biosphere Land Exchange model is a multi-layered land surface model which 
simulates the soil moisture and soil temperature for six fixed layers of 0.022 m, 0.058 m, 0.154 m, 0.409 m, 
1.085 m and 2.872 m in thicknesses, totaling to an overall depth of 4.6 m. The community version of the 
model does not make provisions for the user to change either the number of layers or their thickness. 
Moreover, this model does not facilitate the specification of parameter data for individual layers of the 
profile. However, it is possible to initialize the soil moisture of all six soil layers. CABLE comprises of five 
sub-models, namely the radiation model, canopy meteorology model, surface flux model, soil and snow 
model, and ecosystem respiration model. The focus is again on the soil (and snow) sub-model, which 
includes three prognostic variables, namely; soil temperature, liquid water and ice content. The soil moisture 
calculations are also made with the Richard’s equation, but with the Clapp and Hornberger (1978) 
constitutive relationship (Abramowitz, 2006; Kowalczyk et al., 2006; Wang et al., 2011). Kowalczyk et al. 
(2006) discusses the model physics in detail. 

2.3. Parameter ESTimation – PEST  

The Parameter ESTimation software (Doherty, 2005) has been used here for retrieval of the soil hydraulic 
parameters by calibrating the predicted to observed near-surface soil moisture time series. As a nonlinear 
parameter estimator, PEST can be run independently of any model and easily implemented to estimate 
parameters, with its automatic calibration procedure minimizing an objective function related to the square 
difference between the 'observed' and simulated variables. PEST uses the Gauss-Marquardt-Lavenberg 
algorithm - a method that requires a continuous relationship to exist between model parameters and model 
outputs, so that it can normally find the local minimum in the objective function in fewer model runs than 
any other parameter simulation method. The optimal parameter set is defined as that for which the sum of 
squared deviations between the model-generated observations and experimental observations is reduced to a 
minimum. For this work, the optimization code was used as is without any modifications. Doherty (2005) 
discusses the model and its performance in detail. 

3. NUMERICAL EXPERIMENTS 

A synthetic-twin experimental approach was applied in this study. The predicted soil moisture for a selected 
soil type and its parameters (kept constant for both models) was used to simulate what is termed a 'true' time 
series of soil moisture states using the 'true' soil hydraulic parameters. The soil hydraulic parameters 
belonging to a different soil type were then substituted and the simulated soil moisture states termed 'open 
loop'. The 'true' twelve-month time series soil moisture data corresponding to the surface layer (0-2.2 cm) 
was then used to build the objective function that would be minimized by PEST to retrieve the original set of 
'true' parameters. The optimized parameter values will have the prefix 'retrieved' throughout the paper. 

3.1. Data Sets 

This study is for a one-dimensional synthetic soil column. The meteorological forcing data along with the 
soil and vegetation parameters were obtained from site Y3 of the OzNet (http://www.oznet.org.au/) 
monitoring network (Smith et al., In review), meaning that a comparison with actual observed soil moisture 
records could also be undertaken. This particular point is located near Yanco, NSW, with meteorological data 
also available at 30-minute intervals. When specifying initial conditions for the models, field observation 
data for soil moisture and temperature corresponding to this station have been used. All data are for the year 
2003, which had a record of soil moisture ranging from extremely dry conditions to extremely wet 
conditions. Figure 1 shows the 12-month field observation of soil moisture for Y3 at three depths. 

Since actual soil hydraulic parameters for the simulated depths were not available for Y3 at the time of this 
work, the models were run using the default Food and Agriculture Organization of the United Nations' (FAO) 
soil texture map together with the default soil hydraulic parameter interpretation from Rawls et al. (1982). 
The results corresponded to medium-fine silty clay soil type, and this was used in the 'true' run. For the 'open 
loop', soil hydraulic properties for a coarse-medium-fine sandy clay loam soil type were chosen, based on the 
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same databases as the ‘true’ run. To calculate the dry thermal conductivity and heat capacity parameters from 
soil texture, which are required inputs for the JULES model, equations from Jones (1996) were used.  

3.2. Sensitivity Studies 

Both models simulate soil temperature as well as soil moisture. For their respective soil modules, CABLE 
requires eleven soil parameters while JULES uses eight. However, not all of these parameters contribute 
equally towards soil moisture calculation, and so to identify the parameters that are more sensitive to soil 
moisture simulation, the parameter sensitivity index has been used. The sensitivity index represents a relative 
normalized change in output to a normalized change in input. The greater the absolute value of the index, the 
greater the impact an input parameter has on a particular output (Nearing et al., 1990; Al-Abed and Whiteley, 
2002). The sensitivity index (S) is defined as  

  � = 	 ����	��	��		�

	 	��
���


 , (1) 

where I1 and I2 are the smallest and greatest input values, respectively, tested for a given parameter, Iavg is the 
average of I1 and I2, O1 and O2 are the model output values corresponding to I1 and I2 and Oavg is the average 
of O1 and O2. Consequently, for implementation this index is calculated for each model time step. 

Three soil moisture time series corresponding to the parameter minus standard deviation, the parameter value 
itself and the parameter plus standard deviation were used for the values of O1, Oavg and O2 respectively. As a 
result, the parameter sensitivity index was a time series with a single value of S calculated at each instant of 
time. Consequently, the sensitivity index reported for the top layer in Table 1 is the average of the absolute 
values over the time series. The standard deviations given in Clapp and Hornberger (1978) were used in 
perturbing the soil parameters. Table 1 contains the parameters that showed the highest sensitivity to soil 
moisture simulation together with the soil properties and standard deviations (S.D) used to calculate the 
parameter sensitivity index. 

In the sensitivity analysis, the volume of water at wilting point in Rawls et al. (1982) was initially used. 
However, the resultant soil moisture prediction from CABLE was unrealistic, as the model did not dry-down 
below the wilting point, and showed a loss of sensitivity to the soil hydraulic parameters. Hence, a value near 
to the lowest observed soil moisture was used as the volume of water at wilting point for CABLE, resulting 
in a more realistic soil moisture simulation with higher model sensitivity (Figure 1). While JULES had no 
such operational limitation, the same wilting point parameter value was used in the work throughout this 
paper in order to make both models as identical as possible for an unbiased evaluation. 

3.3. Parameter Retrieval 

To study the parameter retrieval capability of the two models, several parameter combinations were 
examined, such as the retrieval of a single parameter, retrieval of a subset of parameters, and the retrieval of 
all parameters sensitive to soil moisture simulations. The number of layers and their thickness have been kept 
consistent for both models, with six layers of thicknesses 0.022 m, 0.058 m, 0.154 m, 0.409 m, 1.085 m and 
2.872 m, thus complying with pre-defined layers of CABLE. 

After recording the model simulation corresponding to the 'true' parameters, the soil parameter values were 
changed to the coarse-medium-fine sandy clay loam soil type, in order to represent the uncertainty in 
published soil hydraulic parameter maps. It was then attempted to "retrieve" the original parameters using the 
PEST model, which changes the user specified parameters until a minimum value for the objective function 
between the 'true' and 'open loop' predictions of surface soil moisture is achieved. Hence, assuming that the 

     
Figure 1. The observed and model simulated soil moisture values, from left to right, a) 0-7cm, b) 0-30cm and 

c) 30-60cm. 
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top layer at 0.022 m thickness represented the near-surface soil moisture observation from satellite, the model 
simulations for the top layer were used in the retrieval process.  

4. RESULTS AND DISCUSSION 

From the sensitivity analysis, six of the eleven soil parameters used in CABLE were found to have a 
significant influence on soil moisture prediction. Moreover, of the eight parameters that JULES uses, the 
same six parameters showed the highest sensitivity (Table 1).  

The experimental approach included i) retrieval of one parameter at a time, ii) different combinations of two 
and three parameters, and iii) all six parameters simultaneously. It was observed that the RMSE values of 
predicted soil moisture were very much lower when a single parameter value is retrieved, as compared to 
retrieving two or more parameters.  However, not all of these parameter retrievals are shown here. Tables 2 
and 3, corresponding to the CABLE and JULES models respectively, show an example of the behavior of the 
soil moisture simulation when three input parameters are presumed to be poorly known. The 'true', 'open 
loop' and 'retrieved' parameter values are given together with the root mean square error (RMSE) of the 
simulated soil moisture in the tables. It is observed from Tables 2 and 3 that CABLE yields a lower RMSE in 
predicted soil moisture using the retrieved parameters when compared to the JULES model, but that the 
correct parameter values are not as accurately retrieved. It is also observed that the RMSE for the deepest 
layer is nearly zero for both models, which is mostly because the changes seen in the surface layer are not 
reflected in the deep layer on the timescales of this simulation.  

Soil moisture values predicted by JULES and CABLE corresponding to the parameters used for the 'true' and 
the 'open loop' runs, plotted against the field observation data for the same dates for depths of 0-0.07 m,  
0-0.30 m and 0.30-0.60 m, are shown in Figure 1. Since the simulations have different depths from field 
observations, all simulated values were brought to the observation depths by using weighted averages. It is 
observed from the figures that both models over-estimated the soil moisture after a rainfall event and did not 
dry down as quickly as the field observations. The depth 0.30-0.60 m shows an opposite result, where both 
models have under-estimated the soil moisture. However, it must be highlighted that the parameters used as 
inputs for the models have not been calibrated against field data. Some important characteristics and 
behavioral patterns of the selected land surface models are also summarized in Table 4. 

5. CONCLUSION 

It was observed that when retrieving two or more parameters simultaneously, an overall low RMSE can be 
obtained for the surface soil moisture, but not all of the retrieved parameters resemble the 'true' values (not 
shown here). The possibility to retrieve three parameters simultaneously (shown in Tables 2 and 3) with 
approximate standard deviations of 0.05 m3/m3, 0.08 m3/m3 and 0.00001 m3/m3 for parameter 'b', suction at 
saturation and hydraulic conductivity at saturation, respectively, for the JULES model was approximated by 
PEST. The standard deviations for the 'retrieved' parameters for CABLE, again observed by PEST, were 
0.194 m3/m3, 0.183 m3/m3 and 1.003*10-7 m3/m3 respectively. Some parameters like the parameter 'b' and 
volume of water at field capacity were better ‘retrieved’ when compared to the other parameters. However, 
some of these limitations may be due to the selected optimization software and this will be investigated 
further by assessing the limitations and advantages of different optimization methodologies.  

The major disadvantages (shown in Table 4) that can be identified with the CABLE model as compared to 
JULES is not having an option for multi-layer soil property input data, not having provisions to vary the soil 
layer thicknesses as desired by the user, and its inability to provide realistic simulations when using a realistic 
wilting point value. It is therefore concluded that the Joint UK Land Environment Simulator (JULES) is the 
more suitable land surface model for soil hydraulic parameter retrieval of the two tested here, and will 
consequently be used in future work on this topic. 
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Table 2. The "True", "Open Loop" and "Retrieved" parameter values with the root mean square error (RMSE) of soil moisture for each layer of the CABLE model 

after parameter retrieval and for the open loop. The "True" values of Layer 1 were used as the observations in the retrieval process. 
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Parameter 'b' 10.4 7.12 10.91 
0.003 0.003 0.008 0.004 0.005 0.000 0.039 0.030 0.051 0.021 0.017 0.007 Suction at saturation (m) -0.490 -0.299 -0.200 

Hydraulic conductivity at saturation (mm/s)    0.001 0.006 0.47E-05 

Table 3. As for Table 3 but for the JULES model.  
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Parameter 'b'  10.4 7.12 10.72 
0.013 0.016 0.024 0.013 0.004 0.000 0.044 0.028 0.032 0.043 0.038 0.002 Suction at saturation (m) -0.490 -0.299 -0.457 

Hydraulic conductivity at saturation (mm/s)    0.001 0.006 0.0006 

Table 4. Summary of the characteristics of the two models for soil 
parameter estimation.   

Description JULES CABLE 

Ability to specify multi-layer input data ●  

Ability to enter multi-layer initial conditions ● ● 

Ability to retrieve near-perfect parameter values ●  

Ability to match the wetting-drying 'trend' of observations   ●1   ●1 

Flexibility in varying the depths of the soil layers ●  
Flexibility in varying the number of soil layers ●  

Table 1. Parameter values used together with published uncertainty 
according to soil type, together with sensitivity index (S). A higher value 

means the parameter is more sensitive. 

Parameter Value S.D 
S 

CABLE JULES 

Parameter 'b' (-) 10.4 4.45 0.196 0.284 
Suction at saturation (m) 0.490 0.31 0.048 0.042 
Hydraulic conductivity at saturation (mm/s) 0.001 0.0005 0.044 0.108 
Volume of water at saturation (m3/m3) 0.482 0.064 0.486 0.611 
Volume of water at field capacity (m3/m3) 0.370 0.064 0.352 0.861 

Volume of water at wilting point (m3/m3) 0.283 0.064 0.020 0.099 
1 using default parameters from global datasets 
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