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Abstract: The explicit quantification of uncertainty is one of the useful features of Bayesian network 
models. Identification and quantification of uncertainty is particularly important in complex fields such as 
environmental management, where there may be great natural variability and data uncertainty, and there may 
not be sufficient data available to characterise all relevant variables. Bayesian networks also encourage 
explicit decisions about the subjective choices that can be common in management generally, for example in 
deciding on the relative importance of non-comparable variables.  

In this paper, some of the data from a previous study in the Bayesian framework is further examined. The 
previous project is described in more detail in a previous paper, however, here we focus specifically and in 
more detail on the expert elicitation process, outcomes and implications than was possible in the previous 
paper. The original project involved using an Ecological Risk Assessment approach to guide the overall 
project design, with a participatory approach used to build a Bayesian network model with input from a range 
of stakeholders in the Kongulai Catchment in the Solomon Islands. This process incidentally produced 
quantified subjective opinion data from one group of expert stakeholders, those involved professionally in 
water or catchment management.  

Specifically, we examine the variation in information elicited from the individual experts for the conditional 
probability tables used in the Bayesian network model, using Median Absolute Deviation (MAD) as a simple 
but robust descriptive statistic to quantify differences in opinion between experts. For univariate data X1, X2, 
…Xn; the MAD = mediani ( |Xi - medianj (Xj)| ). That is, the median of the set of absolute differences between 
each value and the median. 

The quantification of variation in opinion within this group allows us to explore and identify sources of this 
variation and divergence. As the experts provided estimates of uncertainty regarding catchment relationships, 
the MAD then provides a measure of their ‘uncertainty about uncertainty’. Some primary features illustrated 
with this representation of variation in expert opinion:  

• the greatest agreement between experts (lowest MAD) usually occurs where pressures (parent variables) 
all act on a variable in the same direction, 

• greater disagreement (higher MADs) are seen where pressures act on a variable in opposing directions, 
and also where there is one or several variables where little is known, 

• the highest average MAD can be used to identify what combination of pressures cause the greatest 
uncertainty between experts, and can narrow identification where there is one of multiple pressures 
causing the greatest uncertainty. 

Difficulties encountered in the use of this measure include its low resolution and discarded outliers, 
inconsistencies in expert opinion, and time constraints limiting the complexity of the elicitation and the 
number of experts involved. Further work would be valuable to explore the impact of a larger group of 
experts, including those with non-traditional forms of expertise, such as local knowledge, and alternative 
elicitation processes. How quantification of uncertainty, and further, our uncertainty about uncertainty, can 
be used in the wider context of natural resource management remains unresolved. 

Keywords: Uncertainty, Bayesian network model, catchment management, expert elicitation, expert opinion 

19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011 
http://mssanz.org.au/modsim2011

3840



Chan et al., Uncertainty about uncertainty within a stakeholder group  

1. INTRODUCTION 

In this paper some of the data from a previous study in the Bayesian framework is further examined. The 
previous project is described in detail in Chan et al. (2010), however, here we focus specifically and in more 
detail on the expert elicitation process, outcomes and implications than was possible in the previous paper. 

The complexity of environmental systems ensures that in environmental modelling, there are always 
numerous unknown or unrecognised cause-effect relationships (Harris 1994, Townsend and Riley 1999). 
Additionally, unless a particular site has been the focus of long-term research, there is unlikely to be a 
significant history of quantitative data collected and analysed to parameterise the known relationships 
(Likens 1989, Carpenter 2002, Letcher et al. 2002). It is thus sometimes not possible to use traditional 
mechanistic, process-based modelling approaches to simulate integrated environmental systems in the detail 
desirable for management. This deficiency has resulted in an increase in the use of tools such as Bayesian 
network models, which can use ‘experts’ to help define the unknowns for modelling (Korb and Nicholson 
2004, Martin et al. 2005, Hart et al. 2006). Studies have also found expert input to be valuable in moderating 
field data and in narrowing prediction intervals, particularly under data-poor conditions (Martin et al. 2005). 

There is inherent imprecision in all models and also in expert input to models, as well as in the actual process 
of extracting information from experts (O'Hagan and Oakley 2004). A number of studies look at how best to 
conduct elicitation, and problems associated with this imperfect process (Kadane and Wolfson 1998, 
O'Hagan and Oakley 2004, Mac Nally 2007, Kynn 2008). Expert elicitation in the specific Bayesian 
framework is also increasingly studied in recent years (e.g. Cain 2001, Martin et al. 2005, James et al. 2010). 

Bayesian network methods are particularly appropriate in environmental contexts, given not just sparse data 
(requiring the use of expert opinion), and the need to communicate results to non-specialists for management 
decision-making (addressed by the use of a graphical interface), but also due to high uncertainty from 
multiple sources (Ellison 1996). Uncertainty can be defined as “any departure of the unachievable ideal of 
complete determinism” and can be due to 1. natural variability and indeterminism, or 2. lack of 
knowledge/understanding (Walker et al. 2003). In our case, we are primarily concerned with the second type 
of uncertainty, and in particular, the ‘uncertainty about uncertainty’ associated with elicitation of probability 
estimates from experts.  

2. METHODS 

An Ecological Risk Assessment approach was used to guide the overall project design (Hart et al. 2006). A 
participatory approach was used to build a Bayesian network (BN) model. BNs were selected as a relatively 
intuitive form of modelling tool (due to their graphical interface), and there was specific interest in 
developing capacity and understanding in this area from our in-country partners. Our ability to further use the 
data from the model development process to explore consensus in this paper was incidental (and fortuitous). 
Detailed methodology is available in Chan et al. (2010), but a summary of key parts is provided below, with 
additional methods appropriate for our focus on, and analysis of the expert input used in this case.  

2.1. Software 

The software used to build the Bayesian network in both case studies is called Netica™, and is available from 
http://www.norsys.com (Norsys 2005). A detailed background to Bayesian networks and modelling is 
available from Korb and Nicholson (2004). 

2.2. Study Site 

The study site was the Kongulai Catchment on the island of Guadalcanal in the Solomon Islands (Chan et al. 
2010). The objective of the original project was to research ways to assist in local implementation of 
integrated catchment management for water resources. This catchment extends west and south from the 
national capital, Honiara, covering approximately 50 km2, with about 1 km2 coinciding with the city itself, 
the remaining area being under customary (traditional) ownership. The terrain is primarily mountainous and 
covered with heavy tropical forest, with little road access. There are few people inhabiting the bulk of the 
catchment, although informal settlements exist in a narrow strip along the coastal road, with accompanying 
subsistence agriculture. A very small part of the catchment is leased by the Solomon Islands Water Authority 
(SIWA) from the traditional owners, and an impoundment collects water from a spring, which is then 
pumped to water storages for the city. There was little quantitative data available apart from water quality 
measurements, scattered in time and space (Chan et al. 2010). 
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2.3. Expert elicitation 

A BN was produced from the input of a variety of stakeholders, with longer term, more focused input from a 
smaller number of experts. These inputs included an initial system conceptualisation for development of the 
model structure, followed by quantitative definition of variable relationships by estimating conditional 
probabilities (i.e. defining Conditional Probability Tables or CPTs). Quantitative development of the model 
was restricted to government representatives, all working in water management or policy. The experts 
developed CPTs independently, and these were then averaged for the final (prior) CPTs. The model also had 
additional quantitative (field) data inputs used to train the averaged CPT relationships elicited, according to 
Lauritzen and Spiegelhalter (1990). The results from this process were presented to all stakeholder groups for 
feedback and discussion. Model behaviour after CPT averaging and quantitative data training is described in 
Chan et al. (2010). In this paper, however, we are concerned with the originally elicited expert CPTs.  

For this study, we examine the variation in information elicited from the individual experts for the CPTs, 
using Median Absolute Deviation (MAD) as a very simple descriptive statistic to quantify differences in 
opinion between experts. For univariate data X1, X2, …Xn; the MAD = mediani ( |Xi - medianj (Xj)| ). That is, 
the median of the set of absolute differences between each value and the median (Pham-Gia and Hung 2001). 

The MAD is used as a simple and robust measure of statistical dispersion, and is particularly useful in this 
case (with limited data) as there is less influence from ‘outliers’ (Pham-Gia and Hung 2001, Mac Nally 
2007). In this case, the MAD may also be regarded as a measure of uncertainty about uncertainty, as the 
experts are estimating the uncertainty (probability) of a variable being in a particular state. A smaller MAD 
thus indicates greater agreement between experts. Note that mean and standard deviations over expert outputs 
(e.g. Mac Nally 2007), or a measure of entropy (e.g. Lemos 2010) could also have been used as measures of 
variability, however the limited number of experts and the resulting greater influence of outliers, as well as 
the discretised nature of the elicited uncertainty estimates (to a resolution of 5% certainty) made these 
measures less useful. 

It should also be noted that CPTs were only elicited for those variables where the experts felt some 
confidence in their knowledge. Other CPTs were collaborated on, and still other variables were left with a 
uniform probability distribution, reflecting the perceived lack of knowledge (e.g. particularly where variables 
were to do with governance or cultural issues). Where CPTs were elicited, there were also a limited number 
of experts (six to eight).  However, as there remain many individually elicited CPTs (17), and as each CPT is 
a matrix (sometimes quite large), only key trends and illustrative results are reported here.  

3. RESULTS 

3.1. Quantified variation in expert opinion – uncertainty about uncertainty 

As an illustration of the process of quantifying variation amongst expert opinion via their elicited CPTs, 
Figure 1 shows part of the larger Bayesian 
network model developed for this catchment 
(the full BN may be seen in Chan et al., 2010). 
This branch shows the ‘parent’ variables 
considered by the stakeholders to be the 
primary influences (erosion and flooding) on 
sediment in the catchment runoff (which 
eventually provides the water supply). Table 1 
shows the layout of the CPTs elicited for this 
variable, with entries showing the range of 
probabilities given by the group of experts. 
Table 2 shows the associated median CPT 
values and their MADs. It can be seen here 
that where a variable of concern has only two 
potential states, the MAD is uniform across 
states, this starts to vary when there are more 
potential states, as seen in Tables 3 and 4. 
However, as higher variation in any one of these elicited conditional probabilities will necessarily be 
reflected in the complementary probabilities, each row of the CPT can be averaged across states and retain a 
meaningful deviation relative to the other rows in a table (e.g. compare the average/mean MAD in the last 
columns of Tables 3 and 4 with the individual MADs). Table 3 summarises an additional set of medians and 

Runoff Quality (Sediment ) 
high more than 5NTU
low less than 5NTU

45.3
54.7

5.53 ± 6.1

Soil Erosion
high
medium
low

26.4
30.5
43.1

36.6 ± 27

Flooding
recent
notrecent

50.5
49.5

Earthquakes
recent
notrecent

49.6
50.4

Logging Area
high
medium
low

40.8
20.4
38.8

Agriculture
high
medium
low

35.4
35.7
28.9

 

Figure 1. Part of one branch of the Bayesian network 
model for the Kongulai catchment. 

3842



Chan et al., Uncertainty about uncertainty within a stakeholder group  

MADs for the CPTs for soil erosion with three parent variables: (minor) earthquakes, logging and 
agriculture. Table 4 summarises the variation in how experts perceived the water quantity available for 
human use being a product of four parent variables. Some primary features are clearly illustrated with this 
representation of variation in expert opinion. 

1. The greatest agreement usually occurs where pressures (parent variables) all act on a variable in the same 
direction. E.g. where both Flooding and Soil 
Erosion occur or are ‘high’ (top row of Tables 1 
and 2), the MAD is zero (top row of Table 2) and 
the experts have high agreement about how likely 
it is that sediment will be high in the runoff. 
Similarly, it can be seen that there is high 
agreement about when there is likely to be low 
sediment in runoff (bottom row of Tables 1 and 
2). The same pattern is seen in Tables 3 and 4 and 
also in other CPTs not shown here, such as 
Runoff Quality (Microbes), Supply Quality 
(Sediment), Supply Quality (Microbes), 
Household water supply dependability, Logging, 
etc. 

2. In many cases (particularly where there are 
only two parent variables), the greatest variation 
(dispersion) usually occurs where the state of 
parent variables cause opposing pressures on the 
child variable, e.g. in Table 2, Runoff Quality 
(Sediment) has the highest MAD and the most 
disagreement between experts when the two 
primary influential variables are in opposition. 
That is, when there is flooding but no soil 
erosion, or soil erosion, but no flooding (middle 
rows). 

3. Less trivially than the above points, where 
there are more than two parent variables (e.g. Tables 3 and 4), the highest average/mean MAD can also be 
used to identify the more complex situations causing uncertainty between experts.  In Table 3, the greatest 
uncertainty surrounded the amount of erosion that occurs when there was minimal disturbance from logging, 
agriculture and the regular tremors that occur in the catchment (the last two of the key rows shown). 

4. The highest MAD can be used to identify which of the parent variables is the source of greatest uncertainty 
between experts.  In Table 4, the highest MADs occur when leakage is high, rather than when the three other 
parent variables are in a restrictive state.  For example, we can compare the impact of leakage vs access (to 
piped water with a regular supply) by looking at the MADs in row 2 vs that in row 1 and row 3.  This is 
further shown by the highest individual MAD (0.25 on row 6) occurring when experts were asked to consider 
the likelihood that inadequate water is supplied, where all the parent variables are in states that should 
provide adequate water, except for ‘leakage’. 

Table 1. Runoff Quality (Sediment) CPT: range of 
original expert elicited probabilities 

Flooding Soil 
Erosion 

Likelihood that Runoff Quality 
(Sediment) is: 

  High (> 5 NTU) Low (< 5 NTU) 

Yes High 1.00…0.70 0.00…0.30 

Yes Medium 0.90…0.50 0.10…0.50 

Yes Low 0.65…0.20 0.35…0.80 

No High 0.15…0.50 0.85…0.50 

No Medium 0.05…0.30 0.95…0.70 

No Low 0.00…0.10 1.00…0.90 

Table 2. Medians and MADs for Runoff Quality 
(Sediment). 

  Runoff Quality (Sediment) 

Flooding Soil Erosion Medians MADs 

  High Low High Low 

Yes High 1.00 0.00 0.00 0.00 

Yes Medium 0.80 0.20 0.10 0.10 

Yes Low 0.50 0.50 0.15 0.15 

No High 0.40 0.60 0.10 0.10 

No Medium 0.25 0.75 0.05 0.05 

No Low 0.00 1.00 0.00 0.00 

 

Table 3. Medians and MADs for “Soil erosion” (key rows only). 
   SOIL EROSION 

Logging 
Area 

Agriculture (Minor) 
Earthquakes 

MEDIAN MAD Mean 
MAD 

   high medium low high medium low  

High High Recent 0.60 0.30 0.10 0.20 0.00 0.00 0.07 

… 

High Medium Not Recent 0.20 0.55 0.20 0.10 0.05 0.05 0.07 

… 

Low Medium Not Recent 0.10 0.40 0.50 0.00 0.20 0.20 0.13 

… 

Low Low Not Recent 0.10 0.10 0.80 0.10 0.10 0.20 0.13 

 

3843



Chan et al., Uncertainty about uncertainty within a stakeholder group  

Table 4. Water Quantity (for domestic use) expert elicited CPT, median, MAD, average MAD (key rows). 
           
    Median   MAD/Median Absolute Deviation  

Supply Household 
Demand 

Access Leakage High 
(>210) 

Adequate 
(70-210) 

Inadequate 
(<70) 

High 
(>210) 

Adequate 
(70-210) 

Inadequate 
(<70) 

Mean 
MAD 

High Normal Good Low 0.85 0.10 0.00 0.15 0.10 0.00 0.08 

High Normal Good High 0.60 0.20 0.20 0.20 0.10 0.15 0.15 

High Normal Poor Low 0.50 0.15 0.20 0.20 0.05 0.10 0.12 

           

High Overuse Good Low 0.40 0.30 0.20 0.00 0.05 0.10 0.05 

           

Moderate Normal Good Low 0.40 0.30 0.20 0.20 0.02 0.20 0.14 

Moderate Normal Good High 0.40 0.28 0.35 0.20 0.02 0.25 0.16 

Moderate Normal Poor Low 0.38 0.35 0.20 0.08 0.05 0.10 0.08 

           

Moderate Overuse Good Low 0.40 0.35 0.28 0.00 0.15 0.13 0.09 

           

Low Normal Poor High 0.20 0.30 0.30 0.20 0.20 0.20 0.20 

           

Low Overuse Good High 0.05 0.20 0.80 0.05 0.15 0.15 0.12 

Low Overuse Poor Low 0.05 0.15 0.80 0.05 0.13 0.18 0.12 

Low Overuse Poor High 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

 
4. DISCUSSION 

Although the MAD reveals only trivial features in the relatively simple cases (e.g. in Table 2), where variable 
relationships become more complex, the MAD begins to allow more interesting identification of where the 
greatest divergence of expert opinion occurs, and thus which factors and relationships may be at issue. The 
additional complexity is reflected in an increase in the size of CPT under consideration for a variable – this 
may be due to a larger number of parent variables, or a larger number of states in the parent or child 
variables. However, even with the MAD, determining where the greatest disagreement amongst experts 
occurs may not be straightforward. In particular, the experts may not be consistent with their estimations 
throughout a single CPT (particularly where these are complex), potentially due to natural human biases 
arising from framing and human cognitive processes (Kynn 2008). 

The method of expert elicitation for population of a Bayesian network presented here was relatively simple 
and direct. More complex forms of elicitation for detailed distributions (such as the definition of probability 
density functions) have also been developed, with various tools intended to make the required elicitation 
easier, and account for human bias (e.g. specialised software). These tools also have the potential to instantly 
highlight inconsistencies within a CPT for revision, and enable direct analysis of variation in expert opinion 
(Al-Awadhi and Garthwaite 1998, James et al. 2010). However, these tools may not be practical in many 
cases, because of time, computing resources, or because of the experts’ training and background (O'Hagan 
and Oakley 2004). The direct elicitation used in this case can attempt to minimise inconsistencies with highly 
structured processes to check for inconsistencies in CPTs and provide iterative opportunities to rectify them. 

Note that the robustness of the MAD measure also results in (i.e. requires some) coarseness, particularly 
where there are few experts (as in this case study). Discarded outlying probabilities can represent a 
significant proportion of the expertise available, despite these outliers being evidence of some variation in 
expert opinion from the median. As an example, in the first row of Table 1 it can be seen that there was some 
variation in the expert elicited probabilities, but because most of the experts agreed on the same probability 
distribution, two deviations from this were discarded by the MAD calculation, and Table 2 shows a MAD of 
zero in the first row. 

A related facet of the coarseness of the MAD measure is that given the discrete distributions used in the 
Bayesian network, the experts are giving approximations of uncertainty over the range of each state (e.g. in 
Table 1, experts are estimating the likelihood that sediment in runoff quality is “more than 5 NTU”).  
Additionally, in this study, the experts were understandably not comfortable estimating likelihood to a finer 
than 5% resolution. Even this resolution may be finer than information and understanding can realistically 
provide, and elicitation of uncertainties to the closest 10% may be the highest level of precision that can be 
expected (Cain et al. 2001). 
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A larger sample of experts would be valuable in further examining the usefulness of the MAD. One potential 
source for additional data was from the larger pool of stakeholders. Few of the stakeholders outside the 
expert group had much experience in quantitative matters, however, local, place-based, experiential expertise 
of the community landowners could provide key input (e.g. Fazey et al. 2006). The traditional landowners 
had much more frequent and widespread access to the catchment, and were able to provide information about 
the location and behaviour of sinks and springs in the karst geology, the impacts of landslides and the regular 
minor earthquakes on water flow through the catchment and about the occurrence of logging. Further 
investigation is needed into how to ensure that inclusion of local knowledge is reliable (e.g. via additional 
monitoring/sampling to validate data, via set up of systematic approaches where local volunteers are 
involved, or other methods), however there is potential to elicit basic likelihood estimates and CPTs, for 
example, in terms of the frequency and severity of earthquakes, and the history and extent of logging, from 
these non-traditional “experts”, although (as in this case) time constraints may make this infeasible. 

Similarly, in the case of interdisciplinary, integrated modelling efforts, time constraints often limit elicitations 
to those which are relatively simple and limited across the range of important processes, in comparison to 
other projects which may focus on a single process (e.g. Mac Nally 2007, which has a very detailed analysis 
of the expert input into predicting the breeding success of a specific bird species). 

An additional issue requiring further research particularly relevant to this case, but not yet explored, is the 
non-independence of experts consulted. Even given a large group of experts, the experts will often have 
common factors compromising their apparent independence, including the limited number of people with a 
high level of knowledge in any particular specialised topic, the number of potential people who may know a 
specific system (such as a catchment) very well, similar backgrounds, whether educational/academic or 
workplace-based, and employment at the same agencies and departments. Convergence of elicited 
information may thus be more of a measure of shared background rather than certainty in the processes under 
consideration. It should also be reiterated that as used in this paper, the MAD is specifically a measure of 
agreement among experts, rather than a measure of uncertainty about the data available, although variability 
or uncertainty about the data may be one of the reasons leading to agreement or disagreement among the 
experts. 

Finally, it should be noted that although this paper focuses solely on the role of expert input, and although the 
role of expert opinion will remain vital in situations where data is limited, such as in developing countries 
and remote or inaccessible locations (Howard et al. 2006), there is the broader context of management to be 
considered. Field monitoring, cyclical validation against the model outputs, and iterative improvement of 
models are the way in which expert systems and decisions are improved, and are essential to closing the 
adaptive management process cycle. 

5. CONCLUSIONS 

A successful participatory process enabled construction of a Bayesian network model for the Kongulai 
Catchment, aimed at supporting decision making by on-ground water and catchment managers. A key part of 
this process was eliciting quantified expert opinion about many relationships within the catchment system for 
which there was little data. Analysis of the variation between expert opinions is illustrated as useful for 
identifying situations of greatest consensus as well as greatest uncertainty, and the median absolute deviation 
provides a measure of the uncertainty about uncertainty. Additional attention to the situations where this 
uncertainty about uncertainty is greatest, for example, by the managers and through additional monitoring, 
would enable reduction of this uncertainty. However, a limited pool of experts can result restrict the 
usefulness of this analysis. Wider representation and broader definitions of expertise that encompass local 
knowledge and use of participatory processes are of value in reducing uncertainty about data used in 
modelling as well as for the additional social learning benefits and potential for improving environmental 
management, particularly in developing countries where formally collected data can be scarce. 

Additionally, expert elicitation is difficult, and can be fraught by inconsistency, bias, and practical 
limitations. Efforts to remedy these problems can take the form of specialised software or structured iterative 
expert participation and elicitation techniques. Variations in expert opinion can still yield useful outcomes, 
and expert opinion will continue to be needed into the future as long as data is inadequate. However, there 
remain a number of areas where further research into expert elicitation and input is needed. It also remains 
unresolved how we might best use quantification of uncertainty, and further, uncertainty about uncertainty, 
within the wider context of natural resource management. 
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