
Downscaling climate change information: an essential 
ingredient to incorporate uncertainties into adaptation 

policies 

B. Timbal a, Y. Wang a and A. Evans b 
a Centre for Australian Weather and Climate Research, Australian Bureau of Meteorology  

b South Australia Regional Office, Australian Bureau of Meteorology 
 

Email: b.timbal@bom.gov.au  
Abstract:  

A Statistical Downscaling Model (SDM) developed at the Bureau of Meteorology has now reached a stage 
where high resolution climate change projections of essential surface variables (rainfall and daily 
temperature), at a daily time scales, can be generated for the entire Australian continent. These projections 
are resolved onto on a horizontal grid of approximately 5-by-5km, and are based on an existing international 
database of global climate model projections used for assessment of climate change impacts as defined by the 
Intergovernmental Panel on Climate Change (IPCC). 

The statistical linkage at the core of the SDM is based on the idea of daily meteorological analogues where 
optimal matching synoptic weather patterns are searched for in a historical database. The historical database 
employed here is made up of reanalyses of atmospheric circulation as observations for the large-scale 
predictors, and the Bureau of Meteorology’s high quality in-situ observations consisting of a sparse network 
of about 100 to 200 stations across the continent. A combination of daily atmospheric variables are used for 
regional and seasonal optimization of the SDM (e.g. mean sea level pressure combined with an upper air 
moisture variable to predict rainfall or an upper level measure of temperature and air flow to predict surface 
temperatures) resulting in a total of 120 individual statistical models that describe a wide variety of 
Australian climates spanning from the tropical monsoon in the north to cool and temperate in the south. The 
120 models are a product of:  

• Regionalisation of the Australian continent into 10 climate zones where a different statistical model is 
optimized for each region; 

• Meteorological analogues are chosen from within the same calendar season, thus 4 different models are 
optimized for each calendar season; and 

• Analogues are searched separately for the three surface predictands (Rainfall, Tmax and Tmin). 
 
While the optimization and original application of the SDM was based on in-situ data, here we present the 
application of the technique to the latest surface gridded observations produced by the Bureau of 
Meteorology as part of the Australian Water Availability Project (AWAP). In this communication, we 
present and discuss the evaluation of the results using the gridded observations, including: 

• The ability of the technique to reproduce the mean and variance of the observed local series; 

• The ability of the technique to reproduce day-to-day variability, inter-annual variability and long-term 
trends; and 

• The ability of the technique, despite being based on a univariate approach, to reproduce the observed 
relationships amongst individual predictands (rainfall and temperature). 

Following this, each of the individual SDMs are applied to climate scenarios described by a suite of global 
climate models. The flexibility and low cost of the SDM makes for easy application to the large number of 
existing climate simulations, and to sample the uncertainties attached to the plausible future emission 
trajectories as well as the possible response of the climate system as modelled by the current climate models. 
In this regard, the SDM represents an essential ingredient for assessing future climate change uncertainties at 
a scale relevant for local climate impact studies. It has been noted in recent applications of downscaled 
climate projections presented here, that researchers can produce detailed climate change impact studies 
allowing for the development of well informed climate change adaptation policies.  
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1. INTRODUCTION 

 

 A cornerstone of scientific projections used to examine the possible impact of human induced 
climate change on any aspect of the society or the natural environment is the general circulation model 
(GCM). Essentially, a GCM solves sets of complex mathematical equations that describe atmospheric and 
oceanic circulation and interactions that govern the Earths climate system. These equations are solved on 
relatively coarse grids. Reducing the size of the grid cells is computationally expensive, particularly when 
simulations require long GCM integration to adequately simulate the slow response of the climate system to 
external anthropogenic forcings. In addition, the uncertainties attached to the simulation of the future climate 
(e.g. using different external forcings or using different configurations of the same GCM to test the 
sensitivity of the model to the external forcings), means a large number of simulations is preferable for 
evaluation purposes.  

Therefore, there exists a trade-off between high grid resolutions desirable to inform climate change impact 
studies, the computing cost associated with these simulations, and the optimum modelling framework to 
estimate the uncertainties attached to these climate change projections. Currently, most GCMs are integrated 
with a horizontal resolution ranging from 100 to 300 km. Although horizontal resolutions have been 
increasing over the last two decades (e.g. the 4th IPCC assessment, Solomon et al. (2007) and the previous 
assessments), this increase is not commensurate with the overall increase of computing power. This can 
mostly be attributed to two reasons: 1. GCMs are increasing in complexity and becoming more expensive to 
integrate and 2. A large part of the increased computing power has been dedicated to increasing the sampling 
of the uncertainties attached to the projections.  

Climate change impact assessments often require point specific climate projections since local impacts are 
dependent on fine-scale climate variations. While it is possible to integrate a climate model with a very high 
horizontal resolution (e.g. very high climate simulations with a resolution as fine as 10km have been 
completed), it does not provide the full gamut of information about the changing climate necessary to make 
meaningful risk management decisions. The importance of small scale information is particularly apparent in 
regions with complex topography, coastal locations, and in areas of highly heterogeneous land-cover. This 
highlights a gap between what is required to develop climate change adaptation policies and the climate 
change projections obtained from GCMs. Tools to downscale from the coarse information provided by 
GCMs to finer spatial scales are therefore required. In general, it is the spatial downscaling that is of interest 
here, temporal downscaling is not necessary since GCMs provide information at high frequency (less than 
hourly), although GCM data are rarely stored at frequency higher than daily time-scale. 

One method to bridge the gap is to use a statistical downscaling model (SDM). SDMs are based on the 
premise that the regional climate is conditioned by two factors; the large scale climatic state and local 
physiographic features. From this perspective, regional or local climate information is derived by first 
determining a statistical model which relates large-scale climate variables (or predictors) to regional and 
local variables (or predictands). The large-scale outputs from GCM simulations are then fed into the SDM to 
estimate the corresponding local and regional climate characteristics for both current and future climates. The 
Australian Bureau of Meteorology (BoM) has developed a SDM using the idea of meteorological analogues 
(Timbal and McAvaney, 2001). This is one example of a more general type of technique based on weather 
classification methods in which predictands are chosen by matching previous (i.e. analogous situations) to the 
current weather-state. This type of SDM was first developed for generating daily maximum and minimum 
temperatures (Tmin and Tmax) and was subsequently extended to rainfall occurrences (Timbal et al., 2003) and 
then to rainfall amounts (Timbal, 2004). The technique was then applied to other regions across the 
Australian continent to include tropical and extra-tropical climate regimes (Timbal et al., 2008).  

Typically, a SDM is trained on data recorded at observing stations such that climate change projections for 
the same location can be provided. This is the case for the existing SDM, which deliver projections across 
Australia for Rainfall, Tmax and Tmin (Timbal et al., 2009). The ability of SDMs to provide station based 
information is often regarded as an advantage compared to dynamical downscaling techniques. However, 
many impact studies require high resolution gridded information and often several predictands 
simultaneously on the same grid. One possibility is to use the same type of climate model but on limited area. 
A regional climate model (RCM), forced at its boundaries by conditions set by GCMs, can be pushed to 
resolutions down to tens of kilometres at reasonable computing cost, e.g. the Climate future for Tasmania 
project, Grose et al. (2010). While this a feasible option, RCMs remain costly if the uncertainties attached to 
the projections is to be fully evaluated through acquisition of several integrations.  
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Here we present as an alternative to RCMs, an extension of the SDM to gridded observations. This offers a 
cost effective way to deliver high resolution downscaled projections on a regular grid (5km resolution) and 
for three predictands: Rainfall, Tmax and Tmin.  

In this paper, we describe how the SDM was applied to gridded observations (section 2), present the accuracy 
of the model gridded outputs (section 3), evaluate the ability of the model to produce realistic relationships 
amongst the predictands (section 4) and illustrate the existing downscaled climate projections across the 
Australian continent based on available GCMs (section 5). Some final remarks are proposed in section 6. 

 

2. DATA AND METHODS 

  

The SDM was originally developed and validated on high quality (HQ) station data (Timbal et al., 2009) and 
is easily applicable to other predictands series within the same area. In addition, the versatility of the SDM 
has allowed it to be readily applied it to the 5km gridded analyses generated by the Bureau of Meteorology as 
part of the Australian Water 
Availability Project (AWAP) (Jones et 
al., 2009).  The AWAP analysis 
includes precipitation, maximum and 
minimum temperature, obtained by 
interpolating surface measurements 
onto a 0.05° grid (roughly equivalent 
to 5 km by 5km resolution). Here we 
make use of AWAP data from 1958 to 
2006 as our database to search for 
analogue situations. Ten distinct 
climate regions loosely based on 
rotated empirical orthogonal functions 
of annual rainfall were used to apply 
the SDM across the entire Australian 
continent (Timbal et al., 2008). The 
same regions were used but the 
boundaries between them were drawn 
as straight line segments between 
regions unless orographic features 
such as the Great Dividing Range 
across Eastern Australia were found to 
be meaningful (Fig. 1). Using the same 
choice of analogues, the predictands 
from the HQ stations were replaced by 
those from the gridded AWAP data. This made the application of the SDM relatively trivial and the gridded 
projections were generated without specific optimization.  

Daily large-scale atmospheric “predictors” were obtained from the global 2.5° re-analyses of the atmosphere 
completed jointly by the National Center for Environmental Prediction (NCEP) and the National Center for 
Atmospheric Research (NCAR), labelled NNR (Kalnay et al., 1996).   

Once validated, the SDM was applied to GCMs from the Coupled Model Intercomparison Project No3 
(CMIP3) assembled as part of the IPCC 4th Assessment (Solomon et al., 2007). Since the resolution of GCMs 
varies, each was interpolated back onto the NNR 2.5° grid. To ensure the best possible sampling of the 
uncertainties attached to the future projections due to model sensitivities, all GCMs were considered. 
Multiple daily fields are required to perform the statistical downscaling however, and only 11 out of 23 
GCMs included in CMIP3 had stored all the required data. Another limitation arises from the fact that in 
CMIP3, daily fields were only requested for three “time-slices”: 40 years from 1961 to 2000 representing the 
current climate and two 20 years future periods from 2046 to 2065 and from 2081 to 2100. These time-slices 
are currently the only periods for which it is possible to obtain downscaled climate change projections with 
the SDM or any forms of downscaling relying on daily data as input. It is worth noting that this is far from 
ideal since a short 20-year period will have a decadal variability component which is difficult to separate 
from the climate change “signal”. In this regard it is important to use as many GCMs as possible, as each 

 

Figure 1. Australian continent, including major (blue lines) and 
minor (white lines) catchment boundaries; colored shading shows 
the orography (darker color for higher elevations) superimposed 

with the 10 climate regions used by the SDM.
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individual model contributes to sampling decadal variability alongside the model sensitivity to the external 
forcing. In order to sample the uncertainties associated with future projections due to different possible future 
anthropogenic emissions of greenhouses gases, two emission scenarios are considered (out of the 6 
recommended by the IPCC): A2, a high emission scenario, and B1, a low emission scenario.  

 

 
 

Figure 2. Inflation factors for rainfall (left) and Tmax (right) in summer (upper row) and winter (lower row). 
[NB: the high values in the middle of the continent for rainfall (in red) are due to missing AWAP data for 
which in fact no rainfall projection are possible and thus should be ignored].   

The analogue method, as any 
statistical downscaling method, 
has a tendency to underestimate 
the observed variance (von 
Storch, 1999). This is 
particularly critical for rainfall. 
Examination of the rainfall 
probability distribution functions 
(PDFs) drawn from the 
downscaled series shows that 
extreme events are not 
adequately captured and that, 
instead, the SDM reproduces a 
higher frequency of low rainfall 
events. Therefore for rainfall, 
the variance underestimation 
leads to a dry bias. A simple 
inflation factor was developed 
for daily rainfall (Timbal et al., 
2006) and applied to HQ stations 
(Timbal et al., 2009). This 
approach has since been further 
developed by Evans et al. (2011) 
for both rainfall and temperature 
on a regional and seasonal basis. 
The factor is based on the 
observation that the daily rainfall PDF is best approximated by a gamma distribution function (Wilks, 2006). 

 
Figure 3. Scatter plots of mean rainfall for summer (upper row) and 
winter (lower row) without (left) and with (right) the inflation factor.

118



Timbal et al., Downscaling Climate Change Information ….  

 

Using the shape and scale 
parameters describing the 
gamma PDF, an inflation factor 
was computed at each and every 
point on the AWAP gridded 
surface. Figure 2 (left panels) 
shows inflation factors for 
summer and winter rainfall 
mapped across the Australian 
continent. These maps are 
indicative of the performance of 
the SDM. Higher factors 
indicate that the downscaled 
variance is underestimated more 
than that in regions with lower 
factors (typically in regions and 
seasons with few rainfall 
occurrences: i.e. in the North in 
winter and in the South in 
summer).  

The impact of the inflation 
factor on the NNR based 
downscaled reconstruction of the 
AWAP rainfall can be seen on 
the mean (Figure 3) and on the 
daily variance (Figure 4) for all points of the AWAP grid in summer and winter. Removing the systematic 
underestimation of the variance, the inflation factors have eliminated the dry bias evident in the mean 
rainfall. 

For temperature, a similar 
procedure was followed; except 
that the comparison of the PDF 
was made with the theoretical 
Gaussian distribution. The 
temperature inflation factors 
adjust the values of each of the 
analogue temperatures relative 
to its distance from the observed 
mean. An additive term is 
applied to each downscaled day, 
the value of which is determined 
by the correction parameters 
(Evans et al., 2011) which are 
mapped in Figure 2 (right 
panels). As with rainfall, these 
panels reveal the performance of 
the SDM at reproducing 
temperature variability over 
regions for a given season. In 
most instances, the required 
inflation factors are relatively 
small for both Tmax (Figure 2) and Tmin (not shown). The effect of the inflation factors on reconstructed 
variances is clear (Figure 5) as the variance of the series for each grid point closely matches the AWAP 
observation. This correction has no particular effect on the mean of the series since the temperatures were not 
biased to start with.  In addition, the methodology employed here for the correction of downscaled rainfall 
and temperature variance has a negligible effect on the root mean-square error of the downscaled series but 
does lead to only a very small improvement in the inter-annual variance and long-term trends captured by the 
SDM (Evans et al., 2011).   

 

 
Figure 4. Scatter plots of rainfall daily variance for summer (upper 
row) and winter (lower row) for the observed versus reconstructed 
series, with (right column) and without (left column) the inflation 

factor 

 

 
Figure 5. As per Figure 4 but for Tmax 
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3. EVALUATION OF INDIVIDUAL GRIDDED PREDICTANDS 

  

 One of the key statistics for any downscaling technique is the ability to reproduce the correct daily 
values. We computed the correlation between the observed and reconstructed series at the daily time-scale for 
all three predictands and all seasons (illustrated in Figure 6 for summer and winter for both rainfall and Tmax). 
Overall the technique performed as well with the gridded observations as it did with the HQ network (Timbal 
et al., 2009) despite not being specifically fitted to this particular dataset. Correlations vary spatially and 
seasonal, and for rainfall range from 0.3 to 0.6, and between 0.6 and 0.8 for temperature with. 

 

 
Figure 6. Maps of correlation coefficients between daily observed and reconstructed series for rainfall 

(left column) and Tmax (right column); for summer (upper row) and winter (lower row). 
 

 

 
Figure 7. As per Figure 6 but for the correlation coefficients of seasonal mean. 
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Overall, correlation coefficients for rainfall are lower and less coherent, reflecting the effect of local 
influences not necessarily controlled by the large-scale predictors as assumed by the SDM. Correlations are 
particularly low for the Tropics where the extension of the technique is problematic and that only large-scale 
rainfall was found to be the only suitable predictor (Timbal et al., 2008). 

In addition to the reproduction of day-to-day variability, in the context of the application to a changing 
climate, the ability to reproduce year-to-year variability and long-term trends is essential. The inter-annual 
variability of the downscaled series is well correlated with the observed series for all predictands (shown in 
Figure 7 for summer and winter for both rainfall and Tmax) with most areas showing correlations between 0.5 
and 0.9.  Interestingly, in some instances, the inter-annual variability of the seasonal means is well 
reproduced even when daily correlation is low (e.g. for rainfall in the Tropics in summer).  

 

 
Figure 8. Long-term (1958 to 2006) linear trends for rainfall (left column) and Tmax (right column) 

observed (upper row) and from the NNR-based downscaled reproduction of the observations (lower row). 
 

Finally the technique’s ability to reproduce long-term trends was also evaluated (shown in Figure 8 for 
summer for both rainfall and Tmax). Overall it was found to be satisfactory since the SDM is able to capture 
the sign and spatial patterns of observed trends (e.g. summer cases for Tmax and rainfall). The magnitude is 
realistic, particularly for rainfall. In the case of temperature, it was found that, in general the technique 
underestimates the long-term trends. This is likely to be due to an under-reproduction of the magnitude of the 
inter-annual variability as noted in Timbal et al. (2008) for the HQ temperature stations when no inflation 
factor was used. Evans et al. (2011) noted that the newly developed inflation factor for temperature had only 
a limited positive effect in improving the reproduction of the observed magnitude of the inter-annual 
variability and long-term trends. 

 

4. MULTIVARIATE EVALUATION 

   

 The application of the AWAP gridded products has allowed users to access several variables 
(rainfall, maximum and minimum temperature) on a same grid. While the downscaled variables are 
independently derived they need to be physically consistent to be usable in impact modelling.  Therefore it is 
necessary to conduct a multivariate evaluation of the SDM. We test that the relationships between the 
downscaled predictands are consistent with known relationships (Power et al. 1998).  

While the methodology employed here is based on a univariate approach (i.e. analogue days are chosen from 
different individual SDMs and are in most cases from different days), the results are very encouraging, 
suggesting that the methodology chosen is not an issue. Figure 9 shows the reproduction of the relationship 
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between rainfall and the mean of Tmax and Tmin for both summer and winter. This is a very useful comparison 
involving all three predictands generated and indicates that the SDM captures the direction and strength of 
the relationship between these variables. There are areas and seasons where the relationship is not well 
captured, but in most instances the poor reproduction of the relationship between the three predictands can be 
traced back to one of the predictands not being well represented: e.g. the south-west corner of Western 
Australia in summer, where the predominantly negative relationship between rainfall and Tmean is not 
reproduced; that region was noted earlier as an area where correlation for daily rainfall was fairly low 
(bottom left panel in Figure 6).  Other relationships were also evaluated and the findings were similar. 

 

 
Figure 9. Maps of correlation between Rainfall and Tmean (average of Tmax and Tmin) as observed with 

AWAP (left column) and reproduced with the downscaled predictands (right column), for summer (upper 
row) and winter (lower row). 

 
It is worth noting that, although an important step, it remains to be seen that in a future warmer world the 
currently observed relationship between the predictands will remain the same and that the SDM based 
projections will be realistic in reproducing how these relationships may evolve.  This is a more complex 
problem to investigate and is beyond the scope of this brief communication. 
 

5. FUTURE PROJECTIONS 

   
  The SDM was applied to each set of GCM predictors where these were available. In the interests of 

brevity, only the ensemble mean result from the 11 GCMs are presented, but it is important to note that this 
methodology allows the sampling of the full range of uncertainties inherent to the climate model sensitivities.  

 
  Downscaled projections for the differences in rainfall and Tmax are compared with those from the GCMs in 

Figures 10 and 11 respectively. These corresponded to the difference between the A2 emissions scenario 
time-slice 2046-2065 and the current 1961-2000 climate.  

 
For rainfall, in general, there is broad scale agreement between the downscaled projections and the host 
model projections but with sizeable local and regional differences. Most noticeable are the large-scale 
difference in the downscaled autumn season. Here the GCMs project an increase of rainfall across most of 
the continent with only a small pocket of decreased rainfall along the southern coast. The downscaled 
projections are more balanced showing a mixed of increases and decreases across the continent. Although a 
magnitude larger, the downscaled projected autumn rainfall decline along the southern coastal regions are 
well represented. In summer, the large-scale increases across most of the eastern side of the continent are 
much less pronounced in the downscaled results. However, the downscaled results suggest a sizeable increase 
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in rainfall across southern Australia which is not projected by the GCMs. Note that the projected declines can 
be sizeable in percentage terms but small in absolute term as observed rainfall totals are small over many 
areas in summer. Finally, the downscaled changes of rainfall for winter (across the entire continent) and in 
spring (across most of the southern and eastern part) are consistent with those of the GCM-based projections. 
In some places (e.g. along the southern coast) the magnitude is much larger but in others its spatial extent is 
reduced (e.g.  the south west corner of Western Australia). The projections change sign in some regions, in 
particular along the eastern seaboard of Australia in spring; a region where GCMs tend to perform poorly 
(Timbal, 2010). 
 

 
 

Figure 10. Maps of the differences (for each calendar season, summer to spring from top to bottom) 
between future projection for rainfall by 2050 using the A2 scenario and the current climate as a 

percentage of the current climate; maps are constructed as the ensemble mean of 11 GCMs from the 
CMIP3 database, either downscaled (left column) or using direct rainfall from the models interpolated to 

the same horizontal grid as the NNR (right column). 
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A comparison of the downscaled and direct model projections for temperature (Figure 11) also reveals a 
general agreement with many local and regional differences. Downscaled projected warming tends to be 
either of similar or smaller magnitude than those given by the GCM. There are hardly any instances when the 
statistical downscaling of the GCMs produces a larger warming than the host models. This systematic 
tendency suggests a possible bias of the SDM and is indicative that the statistical linkage may not capture the 
full climate change signal produced by the host models. This potential underestimation of the future climate 
signal would be consistent with the already noted under-reproduction of the magnitude of the year to year 
variability (Timbal et al., 2009); that underestimation was not satisfactory reduced following the 
development of the inflation factor for temperature (Evans et al., 2011). The possibility that future warming 
is under represented by the SDM requires further investigation and is beyond the scope of this brief 
communication.  
 

 

 
 

Figure 11. As per Figure 10 but for Tmax projections 
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6. DISCUSSION AND CONCLUSIONS 

  

 We have illustrated the ability of the current SDM, to provide downscaled projections at daily time 
scales across Australia on a 5 by 5 km regular grid. It is a highly effective approach with a very low 
computational cost. It is flexible, adaptable and currently provides projections for time-slices in both the 21st 
century for a warmer climate and for the current climate.  

Currently, downscaled projections are based on the international CMIP3 database but in the near future will 
be applied to the CMIP5 dataset that is being assembled in time for the 5th assessment to be delivered by the 
IPCC in 2014. The SDM performs as a perfect prognostic (i.e. it is not fitted to a particular GCM) and hence 
can be directly applied to the new CMIP5 dataset. While not challenging scientifically, it represents a 
tremendous task due to the size of the data involved in this exercise. The amount of daily data requested from 
various modelling groups as part of the CMIP5 dataset is much larger than that CMIP3 and will provide an 
opportunity to expand the understanding of future projections. More GCMs are likely to be available with 
more future emission scenarios, as well as 150 years long periods (from 1950 to 2100). In addition, short-
term climate predictions (20 to 30 years ahead) initialized with realistic initial conditions will also be 
available. While the framework to do this work is in place, the very size of the data involved makes it a 
lengthy and complex task. It is expected that downscaled projections are only likely to become available in 
stages over the course of the next two years (2012 to 2014). 

 
The low cost of the statistical downscaling approach makes it feasible to fully evaluate the uncertainties 
attached to climate projections (either due to future emission pathways or due to climate model sensitivities 
and regional differences but not including the uncertainties attached to the downscaling approach itself). To 
date, high resolution projections have been made available and provided to numerous groups in Australia 
dealing with the risk posed by future climate change on human activities, human health or the natural 
environment. These downscaled projections provide researchers with the necessary input for impact 
modelling tools.  
 
While this communication focuses on illustrating the ability of the current SDM when applied to gridded 
observations, there is room for improvement in several aspects.  Some issues involve limitations of the 
technique in reproducing the observed variability of the local predictands. The inflation factors developed for 
rainfall and temperature can reduce or eliminate the impact of the underestimation of variance on both the 
mean and the variance of downscaled series, but do not appear to be very effective in improving the amount 
of inter-annual variability reproduced. This is of concern in the face of downscaled future temperature 
projections which are lower than the direct model projections. In addition, as noted during the evaluation of 
the technique using univariate approaches and confirmed using multivariate approaches, there are regions and 
seasons where the optimal SDM does not appear to give sufficiently good results and therefore the 
projections in those instances should be treated with caution. Finally, the method represents the Australian 
continent by a number of climate regions which are apparent as discontinuities in the results. These 
discontinuities have no physical basis and different future climate change on both sides of the boundary 
should be regarded as equally plausible. Appropriate interpolation, taking into account the uncertain nature of 
the projections, needs to be developed for the current crop of projections in order to provide realistic 
projections for applications (i.e. hydrologic catchments or others) spanning these boundaries. Currently, 
climate change applications requiring data across one of the existing boundaries are provided with 
projections based on the optimal SDM for each side of the boundary extended across the domain of interest 
for the particular study, in order to capture the uncertainties attached to the downscaling technique itself. 
 
Since becoming available, dozen of research groups have accessed the downscaled gridded projections 
discussed here, allowing studies of the impact of future climate change on a range of human activities (e.g. 
wheat production in NSW, Liu et al. (2011)) or managed systems (e.g. water availability and surface run-off 
in catchments, Amirthahathan et al. (2011), Teng et al. (2011)). The common aim of these applications is to 
explore the uncertainties attached to the climate change projections in terms of the relevant local variables 
(e.g. wheat crop climate indices or local surface run-off). 
 
Currently, gridded downscaled projection data are provided on an ad-hoc basis (interested readers are 
welcome to contact the corresponding author to access the data). However, web based tools are currently 
being explored to more efficiently deliver the large amount of gridded data that have been generated. 
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