
The aggregate association index and its links with 
common measurements of association in a 2x2 table: An 

analysis of early New Zealand gendered voting data 

D. Tran a, E.J. Beh a, I.L. Hudson a, L. M. Moore b  

a School of Mathematical and Physical Sciences, University of Newcastle 
b Statistics New Zealand 

Email: c3141292@uon.edu.au 

Abstract: The analysis of aggregate, or marginal, data for contingency tables is an increasingly important 
area of statistics, especially in political science and epidemiology. Aggregation often exists due to 
confidentiality issues or by source of the data itself. Aggregate data alone makes drawing conclusions about 
the true association between categorical variables difficult, especially in dealing with the aggregate analysis 
of single or stratified 2x2 contingency tables. These tables are the most fundamental of data structures when 
dealing with cross-classifying categorical variables hence it is not surprising that the analysis of this type of 
data has received an enormous amount of attention in the statistical, and related, literature. However, the 
information, from which the aggregate data can provide for the inference of association between the 
variables, is still a long standing issue. In order to analyse the association that exists between the variables of 
a 2x2 table, or stratified 2x2 tables, based only on the aggregate data, numerous approaches that lie within the 
area of Ecological Inference (EI) have been proposed.  As an application of this new development, we shall 
analyse a unique record of New Zealand gendered election data from 1893 when it was the first self-
governing country in the world allowing women to vote, this trend quickly spread across the globe. Since the 
NZ data structure consists of stratified 2x2 tables, where the stratifier is electorate, the issue of analysing 
a single 2x2 table shall not be discussed. For stratified 2x2 tables, a number of ecological inference 
techniques exist but these rely on strong, yet untestable assumptions, which are not applicable to a single 2x2 
table. To remedy this, one may analyse the association between two dichotomous variables, given only the 
aggregate data, by using the Aggregate Association Index (AAI). To date, the AAI has been expressed as a 
function of a conditional probability and been used to test if a statistically significant association is likely to 
exist given only aggregate data. Nevertheless, the interpretation about the strength and direction of 
association cannot be obtained through the current AAI. As a result, the purpose of this study is to broaden 
our understanding of the AAI by establishing its functional link with other classical association 
measurements, such as the standardised residual, Pearson’s ratio, contingency and correlation indices. 
For brevity, only the standardised residual shall be considered here as a foundational baseline for the other 
association measures. This work will allow us to confirm the characteristics of the AAI’s generalizability and 
enable analysis of aggregate data in terms of common association measurements. In other words, we show 
that the analysis of aggregate data of the 2x2 tables can be extended from justifying the existence of an 
association to that of determining the strength and direction of the association, if it exists, given only 
aggregate data. The important nature of association between gender and voting in the election shall be 
carefully examined given only aggregate data and compared to the information from a complete data analysis 
reported in (Hudson, Moore, Beh and Steel, 2010). Moore (2005) confirmed that gender was a significant 
factor in determining voting in early New Zealand elections from 1893. This paper shows that the AAI can 
provide the same result for testing the statistical association between the two dichotomous categorical 
variables, voting and gender, irrespective of the association measurements considered, and given only the 
aggregate data, or marginal information, of a 2x2 contingency table. It is noteworthy that, it is also possible 
to establish a relationship between the traditional AAI with other association measurements such as the 
standardised residual, so as to obtain a better understanding of association in terms of strength and direction. 
This new development thus extends the application of the AAI from not only justifying the  existence of 
association, but also to interpretation of  how strong or weak the association is and which direction (positive 
or negative)  it is likely to be. Future developments of the AAI will involve the formulation of how to 
combine multiple AAI (Zg) curves from each electorate into a single index for an election year. This may 
well allow us to compare the trends between politics and gender among different NZ elections (from 1893 to 
1919) and to provide a better and unique methodology for ecological inference. 

Keywords: Aggregate Data, Aggregate Association Index (AAI), 2x2 tables, ecological inference, 
standardised residual, New Zealand election  
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1. INTRODUCTION 

In statistics, aggregate data has always been an interesting topic which attracts a lot of attention, especially 
for aggregate categorical data. In general, data aggregation is any process in which information is gathered 
and expressed in a summary form for purposes of statistical analysis. For categorical analysis, the data is 
often summarised in term of contingency tables. A common aggregation purpose is to get more information 
about association within particular groups based on specific variables such as age, profession, or gender. 
However, due to confidentiality and availability of the data, aggregate categorical data can become very 
difficult to analyse. In contingency tables, it means that only the aggregate, or marginal, totals are available. 
The scope of this paper will only focus on issues of 2x2 contingency tables. 

In order to analyse the association that exists between two dichotomous variables of a 2x2 table, or stratified 
2x2 tables, based only on the aggregate data, numerous approaches that lie within the area of Ecological 
Inference (EI) have dealt with this problem to varying degrees. However, current EI techniques still suffer 
from major shortfalls in the assumptions that are required (Hudson, Moore, Beh and Steel, 2010). An 
approach that does not require ensuring the integrity of the untestable EI assumptions given only aggregate 
data is the Aggregate Association Index (AAI). This technique was proposed by Beh (2008, 2010) and it is 
currently applied for the case of a single, or stratified 2x2 tables.  

The core of the current AAI depends largely on a conditional probability P1, which can be expressed as a 
linear function of p11- the proportion of the sample size appearing in the (1, 1)th cell of a 2x2 table. However, 
there are a variety of classic association measurements that can also be expressed as a linear function of p11. 
Therefore, the main purpose of this paper is to generalise the current AAI and explore its connection with one 
such classic association measure - the standardised residual. We shall demonstrate the properties of this 
generalised AAI, and the residual (as a special case), by analysing the early New Zealand voting data of 
1893. 

2. THE DATA AND NOTATIONS 

2.1 New Zealand Voting Data 

New Zealand (NZ) is a democratic country 
in which members of Parliament (MPs) are 
chosen in free and fair elections. Voting in 
NZ was introduced after colonisation by 
British settlers and, as it was back then, is 
not compulsory; however citizens and 
permanent residents aged 18 years and over 
must enrol to vote before Election Day. The 
history of the NZ election system is an 
interesting one because, in 1893, it was the 
first self-governing nation in the world 
providing women the right to vote in federal 
elections; however they were not eligible to 
stand as candidates until 1919. The trend 
was quickly spread across the globe 
including Australia: South Australia 
enfranchised women in 1894, Western 
Australia in 1899, and the Australian 
Commonwealth government in 1902. One 
may consult the following URL 
www.elections.org.nz/study/education-
centre/history/votes-for-women.html for an 
extensive history of women voting in NZ.  

Table 1 provides a summary of the number of men and women voters as well as the number of registered 
voters for each gender for 11 national elections held from 1893 to 1919. This table is derived from Table 1 of 
Hudson, Moore, Beh and Steel (2010). Fortunately for analysts studying this issue, data at the electorate level 
were also kept that records the gender of those that voted and those that did not. An example of this data can 
be seen by considering Table 2, which provides a summary of the men and women who registered to vote in 
electorate 1 of the 1893 election.  

1st electorate 1893 Vote No vote Total 

Women 1,443 289 1,732 

Men 1,747 842 2,589 

Total 3,190 1,131 4,321 

Y
ea

r

N
o.

 O
f 

E
le

ct
or

at
es

N
o.

 O
f 

re
gi

st
er

ed
 

m
en

N
o.

 O
f 

re
gi

st
er

ed
 

w
om

en

M
en

’s
 v

ot
es

W
om

en
’s

 

vo
te

s

1893 57 175,915 147,567 126,183 88,484

1894 62 191,881 157,942 74,366 47,862

1896 62 197,002 142,305 149,471 108,783

1899 59 202,044 157,974 159,780 119,550

1902 68 229,845 185,944 180,294 138,565

1905 76 263,597 212,876 221,611 175,046

1908 76 294,073 242,930 238,534 190,114

1911 76 321,033 269,009 271,054 221,878

1914 76 335,697 280,346 286,799 234,726

Apr 1919 76 321,773 304,859 241,524 241,510

Dec 1919 76 355,300 328,320 289,244 261,083

Table 1. Summary of the 11 NZ elections, 1893-1919 

Table 2. Cross-classification of registered voters by gender 
for electorate 1, 1893 
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2.2 Notations 

For each election, the electorate data can be summarised as a 2x2 contingency table; consider Table 2 to be 
one such example. Therefore, for a particular election, denote the total number of registered voters in the gth 
electorate by ng and the overall NZ population for a particular election is ܰ = ∑ ݊ீ where G is the total 
number of electorates. Suppose that the number of voters in the ith row and jth column (for i = 1, 2 and j =1, 2) 
of the 2x2 table is nijg with an electorate proportion of pijg = nijg / ng, the ith and jth marginal proportions can be 
denoted as pi.g =  ni.g / ng and p.jg = n.jg / ng respectively. 

For the study of the NZ voting data, the row variable consists of the gender categories “Women” (for i = 1) 
and “Men” (i = 2). Similarly, the column variable reflects whether a registered individual voted or not with 
categories “Vote” (j = 1) for a registered individual who voted and “No Vote” (j = 2) for a registered 
individual who did not vote. Table 3 provides a summary of the notation used in this paper. 

gth electorate Vote No vote Total

Women n11g n12g n1.g 

Men n21g n22g n2.g 
Total n.1g n.2g ng 

 

Typically, analysing a contingency table involves answering the two questions: 1) Is there enough evidence 
to suggest an there exists a statistically significant association between the categorical variables? 2) If the 
variables are associated, how can we measure or quantify the association among them? The first question can 
easily be achieved by examining the Pearson chi-squared statistic calculated from the counts and marginals 
of a contingency table. In the case of the gth electorate, the Pearson chi-squared statistic can be considered.  

	 ܺଶ = ݊ ൫݊ଵଵ݊ଶଶ − ݊ଵଶ݊ଶଵ൯ଶ݊ଵ.݊ଶ.݊.ଵ݊.ଶ  (1) 

For the second question, the Pearson product moment correlation can be used to determine the direction and 
magnitude of linear trend within a table.  ݎ = ݊ଵଵ݊ଶଶ − ݊ଵଶ݊ଶଵඥ݊ଵ.݊ଶ.݊.ଵ݊.ଶ  (2) 

The correlation coefficient ranges from -1 to 1. A value of ±1 implies that a perfect association, while ݎ = 0 
implies no association. The two questions above can be easily answered if the cell values of the contingency 
table are known. Given that, in this paper, only the marginal totals (or aggregate data) are available, Beh 
(2008, 2010) derived the Aggregate Association Index and showed that these questions can be answered for a 
2x2 table. In the following sections, this index will be described and applied to analyse the NZ voting data. 

3. THE AAI 

Denote ଵܲ = ݊ଵଵ/݊ଵ. as the conditional probability of an individual being classified into ‘Column 1’ 
given that they are classified in ‘Row 1’ of the gth electorate. Beh (2008, 2010) showed that the Pearson chi-
squared statistic, (1), can be expressed as a function of ଵܲ and the aggregate data from the gth electorate by: 

ܺଶ൫ ଵܲหଵ., ଵ൯. = ݊ ቆ ଵܲ − ଶ.ଵ. ቇଶ ቆଵ.ଶ..ଵ.ଶቇ (3) 

It can be seen that the chi-squared statistic is a quadratic function (with positive concavity) in terms of the 
conditional proportion	 ଵܲ.When the cell values of Table 2 are unknown, it is not possible to calculate P1g, 
nor is it possible to determine	 ܺଶ൫ ଵܲหଵ.,  ,ଵ൯. However, the extremes of the permissible values of the (1.
1)th cell frequency (Duncan and Davis, 1953) are well understood to lie within the interval 

భభܮ  = ,൫0ݔܽ݉ ݊.ଵ − ݊ଶ.൯ ≤ ݊ଵଵ ≤ ݉݅݊൫݊.ଵ, ݊ଵ.൯ = ܷభభ (4) 

Hence from (4) the value of P1g lies within the interval: ܮభ = ݔܽ݉ ቆ0, ݊.ଵ − ݊ଶ.݊ଵ. ቇ ≤ ଵܲ ≤ ݉݅݊ ቆ݊.ଵ݊ଵ. , 1ቇ = ܷభ (5) 

Table 3.  A 2x2 table of registered 
voters in the gth electorate of an election 
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Since ܮଵ and ଵܷ only depend on the marginal information, (3) can be investigated by using only the 
marginals. By taking into account the above properties of P1g, Beh (2010) showed that when only aggregate 
data from a 2x2 table is available, and a test of the association is made at the α level of significance, the 
bounds of ଵܲ are  

భఈܮ = ݔܽ݉ ቌ0, ଵ. − ଶ.ඨ߯ఈଶ݊ ቆ.ଵ.ଶଵ.ଶ.ቇቍ ≤ ଵܲ ≤ ݉݅݊ቌ1, ଵ. + ଶ.ඨ߯ఈଶ݊ ቆ.ଵ.ଶଵ.ଶ.ቇቍ = ܷభఈ  (6) 

where ߯ఈଶ is the 1 – α percentile of the chi-squared distribution with 1 degree of freedom. Thus, for the gth 
electorate, Beh (2010) derived the following Aggregate Association Index (AAI): 

ఈܣ = 100൮1 − ߯ఈଶ ቂቀܮభఈ − భቁܮ + ቀܷభ − ܷభఈ ቁቃ݇݊ ቀܷభ − ଵቁଷ∙ + ቀܮభ − ଵቁଷ൨. − ቀܷభఈ − ଵቁଷ. − ቀܮభఈ − ଵቁଷቀܷభ. − ଵቁଷ. − ቀܮభ − ଵቁଷ൲.  (7) 

where ݇ = ଵଷమ.మ ቀభ..భ మ..మቁ. For a given α level 

of significance, this index is the ratio of the 
total region that lies under the curved 
defined by (3) but above the critical value 
of		߯ఈଶ. Hence, given only the aggregate 
data, this index quantifies how likely it is 
that a statistically significant association 
will exist between the two dichotomous 
variables at the α level of significance. 
Figure 1 provides a graphical 
representation of the index. The index	ܣఈ 
is bounded by [0,100] where a value of 
zero indicates that, at the α level of 
significance, there is no evidence of an 
association between the variables. A value 
close to 100 indicates that, at the α level of 
significance, there is enough evidence to suggest an association between the two variables (based on the 
available aggregate data). 

4. THE TRANSFORMATION OF p11 IN THE AAI 

Central to the original AAI, is the conditional proportion	 ଵܲ =  ଵ., which is just a simple linear/ଵଵ
transformation of the	ଵଵ. However, there are many other simple linear transformations of 	ଵଵ  that yield 
other popular measures of the association between two dichotomous variables. Therefore, this suggests that 
the AAI is expressible as a function of association measurement other than ଵܲ. The form for any linear 
transformation of 	ଵଵ  can be generalised as	݈൫ଵଵ൯ = ଵଵܽ + ܾ. The choice of  measurement that is used 
to reflect the association structure between the row and column categories of a 2x2 contingency table can be 
considered by choosing the appropriate value of a and b. We shall consider how the relationship between the 
generalised form of p11 and the AAI is shaped in the following sections. In this section, we shall establish a 
relationship between the linear transformation of 	ଵଵ and the AAI.  By considering the transformation 
of	݈൫ଵଵ൯	, the bounds of (5) generalise to: ܮ = ,൫0ݔܽ݉ܽ ଵ. − ଶ.൯ + ܾ ≤ ݈൫ଵଵ൯ ≤ ܽ݉݅݊൫.ଵ, ଵ.൯ + ܾ = ܷ (8) 

while (6) becomes 

ఈܮ = ݔܽ݉ ܾ, ଵ.ܽ ቌ.ଵ − ଶ.ඨ߯ఈଶ݊ ቆ.ଵ.ଶଵ.ଶ.ቇቍ + ܾ ≤ ݈൫ଵଵ൯
≤ ݉݅݊ ܽ.ଵ + ܾ, ଵ.ܽ ቌ.ଵ + ଶ.ඨ߯ఈଶ݊ ቆ.ଵ.ଶଵ.ଶ.ቇቍ + ܾ = ܷఈ  

 

 

(9) 

Figure 1. Graphical illustration of AAI concept for the gth 
electorate 
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We may also express the chi-squared statistic in terms of	݈൫ଵଵ൯ by: 

ܺଶ൫݈൫ଵଵ൯|ଵ., ଵ൯. = ݊ ݈൫ଵଵ൯ − ܧ ቀ݈൫ଵଵ൯ቁܽଵ.൫1 − ଵ.൯ ଶ ቆଵ.ଶ..ଵ.ଶቇ (10) 

where ܧ ቀ݈൫ଵଵ൯ቁ = ଵଵ൯൫ߤ = ଵଵ൯൫ܧܽ + ܾ is a linear function of the expectation of the (1, 1)th cell value 

under the hypothesis of independence. Note that, irrespective of the choice of a and b (other than a = 0, 
which we won’t consider here), the chi-squared statistic is a quadratic function in terms of	݈൫ଵଵ൯. By the 
definition of the AAI, the area under the curve defined by (10) but above the critical value	߯ఈଶ reflects a 
significant association hence the generalised AAI for any simple linear transformation may be expressed by 

ଵଵሻ൯ఈ൫݈ሺܣ = 100൮1 − ߯ఈଶൣ൫ܮఈ − ൯ܮ + ൫ ܷ − ܷఈ ൯൧݇݊ ቀ ܷ − ଵଵ൯ቁଷ൫ߤ + ቀܮ − ଵଵ൯ቁଷ൨൫ߤ 		
− ቀ ܷఈ − ଵଵ൯ቁଷ൫ߤ − ቀܮఈ − ଵଵ൯ቁଷቀ൫ߤ ܷ − ଵଵ൯ቁଷ൫ߤ − ቀܮଵ −  ଵଵ൯ቁଷ൲൫ߤ

(11) 

where ݇ = ቀ3ܽଶ൫ଵ.ଶ..ଵ.ଶ൯ቁିଵ. From (8), (9), (10), and (11) it can be seen that the AAI can be 

expressed in term of any linear function of ଵଵ and its value remains constant regardless of which linear 
function of ଵଵ. In terms of association measurements, it means that the value of AAI is constant regardless 
of which association measurement is considered, as long as the measurement can be expressed as a linear 
function of ଵଵ.This new characteristic of the AAI shall be examined more closely in the following section. 

5. STANDARDISED RESIDUAL AND THE AAI 

Suppose we consider the standardised residual of the (1, 1)th cell value of the 2x2 contingency table 

ܼ = ଵଵ − ଵ.ଵ.ଵඥ.ଵ.  (12) 

See, for example, Haberman (1973) and Agresti (2002). This is a special case of ݈ሺଵଵሻ where ܽ =൫ଵ..ଵ൯ିଵ/ଶand		ܾ = −൫ଵ..ଵ൯ଵ/ଶ. Therefore, from (8), ܼ is bounded by ܮ = −ඥଵ..ଵ݉݅݊ ቆ1, ଵቇ.ଵ.ଶ.ଶ. ≤ ܼ ≤ ඥଵ..ଵ݉݅݊ ቆଶ.ଵ. , ଵቇ.ଶ. = ܷ (13) 

while (9) in term of ܼ becomes 

ఈܮ = ଵ.ଵ.ଶ.ඨ− ݉݅݊ቌ.ଵଶ. , ඨ߯ఈଶ݊ ቆ.ଵ.ଶଵ.ଶ.ቇቍ ≤ ܼ ≤ ଵ.ଵ.ଶ.ඨ ݉݅݊ቌ.ଵଶ.ଵ. , ඨ߯ఈଶ݊ ቆ.ଵ.ଶଵ.ଶ.ቇቍ = ܷఈ  (14) 

The expected value of	 ܼ, under the hypothesis of independence is	ܧ൫ ܼ൯ = 0. So the chi-squared statistic in 
term of 	 ܼand marginal information can be expressed as: 

ܺଶ൫ ܼ|ଵ., ଵ൯. = ݊ ܼଶ ቆ  ଶቇ (15).ଶ.1

The quadratic relationship between ܺଶ൫ ܼ|ଵ.,  ଵ൯ and ܼ can also be graphically depicted in the same.
way that one can graphically show the relationship between	 ܺଶ൫ ଵܲหଵ., 	and	ଵ൯. ଵܲ. For such a 
relationship, the vertex of ܺଶ൫ ܼ|ଵ., ଵ൯ is at ܼ. = 0 which corresponds to independence between the two 
dichotomous variables. Given (13), (14), and (15) the AAI may be expressed in terms of ܼ such that 

ఈ൫ܣ ܼ൯ = 100ቌ1 − ߯ఈଶ ቂቀܮఈ − ቁܮ + ቀܷ + ܷఈ ቁቃ݇ ቂܷଷ − ଷܮ ቃ − ቀܷఈ ቁଷ − ቀܮఈ ቁଷܷଷ − ଷܮ ቍ ; ݇ =  ଶ (16).ଶ.13
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6. THE AAI AND THE NZ ELECTION DATA 

6.1 2x2 contingency table cells are known 

Consider Table 2 where its cells are assumed to be known, a Pearson chi-squared test of independence gives 
a test statistic of 134.68 and a P-value < 0.0001 at the level of significance α = 0.05. Thus, there is ample 
evidence to suggest that there exists a significant association between the gender and voting patterns at the α 
= 0.05. The direction of this association can also be determined by considering the Pearson correlation 
coefficient: ݎଵ = +0.18 which suggests that the association within the electorate 1, 1893 is likely to be 
positive but weak. That is, women who were registered are more likely to vote than registered men in the 
electorate 1 while registered men are more likely not to vote than registered women. In addition, from (12)  
the  standardised residual ܼଵ = +0.07	and its Monte Carlo P- values < 0.0001 (100,000 simulations with 
Poisson randomly selected cell values) also reflect a statistically weak positive association within the Table 2 
- note that this interpretation is similar to the interpretation of the Pearson correlation coefficient. 

6.2 Aggregate data analysis 

Given only the marginal totals of 
Table 2, the analysis of association is 
now undertaken by considering only 
the marginal information. For 
electorate 1 of the 1893 election, from 
(7) the AAI (α = 0.05) is	ܣ.ହ,ଵ =99.37. Therefore, when testing for the 
association at the 5% level of 
significance, 99.37% of contingency 
tables randomly generated with the 
marginal frequencies n1.1 = 1,732, n2.1 

= 2,589, n.11 = 3,190 and n.21 = 1,131 
will exhibit a significant association 
between the two dichotomous categorical variables: gender and voting patterns. That is, at the 5% level of 
significance and analysing only the aggregate information, the very high AAI indicates that there is very 
strong evidence to conclude that an association exists between the variables at the level of significance α = 
0.05. However, the strength and direction of the association is unknown.  

Figure 2 shows that ଵܲଵ of electorate 1 
is bounded by the lower limit ܮభభ = 
0.35 and the upper limit ܷభభ = 1 and 
that the Pearson chi-squared statistic is 
maximised at these bounds. Similarly, 
the AAI of electorate 1 (1893) can also 
be calculated in terms of the 
standardised residual	ܼଵ by using (16) 
and from (13) its bounds are ܮభ =	−0.29 and ܷభ = 0.19 as shown in 
Figure 3. Note that at the 5% level of 
significance the value of AAI is 99.37 
and constant because the calculation concept of the AAI remains the same when implementing the linear 
transformation (discussed in section 4). The only difference between Figure 2 and Figure 3 is in the 
horizontal scale where the original scaling system in terms of ଵܲଵis converted into	ܼଵ. By doing so, the 
relationship between the AAI and the association measurement is established and the AAI remains 
unchanged. 

The underlying theory described here makes it possible to determine the likely strength of the association 
between voting patterns and gender given only the aggregate data. Since we know that when ܼଵ = 0 the two 
dichotomous variables are independent, the further the limits of		ܼଵ are away from 0, the more statistically 
significant the association is likely to be. This outcome is defined by comparing the  ܮభ and ܷభ with (14). 

Figure 2. AAI (P11) graphical presentation of electorate 1, 1893 

Figure 3. AAI (Z1) graphical presentation of electorate 1, 1893 
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The direction of the association can be 
based on the sign of ܼଵ and the area under 
the curve for ܼଵ > 0 (which reflects a 
positive association) and ܼଵ < 0 (which 
reflects negative association). Figure 3 
shows that the association between voting 
patterns and gender within electorate 1 is 
more likely to be negative (note that this 
is different from the result in section 6.1 
as we consider the aggregate data here). 
Additionally, one may simultaneously 
consider the AAI (Zg) curves for all 57 
electorates in the 1893 election. For example, Figure 4 illustrates how the AAI curves for 57 electorates 
(1893) are presented, and shows that for most of the electorates, the association is likely to be negative. 

7. DISCUSSION 

Given only the aggregate data, or marginal information, of a 2x2 contingency table, this paper shows that the 
AAI can provide the same result for testing the statistical significant association between the two 
dichotomous categorical variables irrespective of the association measure considered.. Moore (2005) 
confirmed that gender was a significant factor at New Zealand elections from 1893. On the other hand, it is 
also possible to establish a relationship between the traditional AAI with classic association measurements 
such as the standardised residual to obtain better understanding of the association in term of strength and 
direction. In other words, this new development extends the purpose of the AAI from only justifying if an 
association exists, it is now possible to interpret how strong or weak the association is and which direction 
(positive or negative) of the association is likely to be. 

Future developments of the AAI can be made by investigating how to combine multiple AAI (Zg) curves 
from each electorate into a single index for an election year. This may well allow us to compare the trends 
between politics and gender among different NZ elections (from 1893 to 1919) and provide better 
perspective when performing ecological inference. Discussions of this aspect of aggregate data analysis can 
be found by referring to, for example, King (1997) and King et al. (2004). For a study of this issue to the NZ 
voting data of 1893-1919, refer to Hudson, Moore, Beh and Steel (2005, 2010). In addition, the effect of 
sample size to the result should be examined and it is useful to extend the connection of the traditional AAI 
with other well-known association measurements such as adjusted standardised residual, Pearson’s ratio, 
contingency, and correlation. Further generalisations for non-linear transformations of p11, including the odds 
ratio (Beh, Tran & Hudson, 2013) can also be considered. 
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