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Abstract: Indicators of fire weather potential are used by fire management agencies to assess fire weather 
danger in order to issue public warnings, ban the lighting of open fires, and also boost procedures to mitigate 
the consequences of a bushfire if such an event occurs.  

The most widely used fire weather danger indices in Australia are the McArthur Forest Fire Danger Index 
(FFDI) and the Grass Fire Danger Index (GFDI). These indices can be calculated at weather stations using 
measurements of weather variables and fuel information. The planning and emergency authorities, however, 
require the spatial distribution of these indices over the whole country. In this paper we present a 
methodology to calculate the spatial distribution of the most widely used fire weather danger index in 
Australia: the FFDI. In particular we are interested in the long-term trend of extreme values of the FFDI. This 
indicator of fire weather conditions is assessed by calculating the return period (RP) of its extreme values by 
fitting extreme value distributions to records of FFDI at a subset of 38 Bureau of Meteorology (BoM) 
automatic weather stations around Australia. The spatial distribution of the return period was obtained by 
applying an advanced spatial interpolation algorithm to the recording stations measurements. One of the 
limitations of this approach is that is does not take into account the impact of climate change on the long-
term fire weather potential. To overcome this issue, we present a methodology to calculate RP of FFDI using 
climate simulated (modelled) data.  

Comparison of FFDI based on interpolated data from observational studies with FFDI calculated from 
climate model simulations for the same period (current climate), shows that both models produce similar 
patterns of FFDI distribution.  Both models show that the highest FFDI over large parts of southern Australia 
occurs during the summer months whilst in northern Australia the highest values occur in spring. The results 
also show that the FFDI in eastern Australia, the most populated region of the country, is higher inland than 
in the coastal areas particularly during spring and summer. 

These results give us confidence that we can use climate model simulations to study the trend of FFDI 
extremes in the final part of the 21st century. 
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1. INTRODUCTION 

This paper discusses models to assess Australia’s fire weather potential (FWP). FWP refers to the set of 
climatic conditions which can lead to bushfires when the other two elements of the bushfire development 
process are present: fuel load and ignition. Determining high fire weather potential for a region allows 
planners to consider whether the proposed use for a land parcel is appropriate, and also allows the emergency 
authorities to consider how they can be better prepared to mitigate the consequences of a bushfire if such an 
event occurs.  

FWP is assessed by calculating return periods of the McArthur Forest Fire Danger Index (FFDI), the most 
widely used indicator of fire weather danger in the Eastern states of Australia (Matthews, 2009). Lucas 
(2010) developed a historical fire weather data set for Australia based on records from a subset of 78 Bureau 
of Meteorology (BoM) automatic weather stations located around Australia. These data contain records of 
daily weather variables which influence fire weather conditions such as temperature, relative humidity, 
drought factor, daily rainfall and wind speed and direction. Based on these records, Lucas (2010) calculated 
daily maximum FFDI and Grassland Fire Danger Index (GFDI), and developed a data set which advanced 
the understanding of conditions prone to producing extreme fire weather danger. Planning and emergency 
authorities, however, require the spatial distribution of these indices and their long-term trend over the whole 
country. In this paper we attempt to close the gap between point and region-based FFDI by calculating 
observational-based return periods of extreme FFDI and presenting the spatial distribution of these return 
periods over the Australian continent. 

An assessment of quality of the data sets compiled by Lucas was undertaken by Clarke et al. (2012). They 
found that only 38 of the 78 stations can be considered of good quality. For this reason in this study we 
utilise only the 38 quality stations for the spatial analysis as discussed in section 3. To move from a station-
based RP to a spatially distributed RP we used an advanced spatial interpolation algorithm (Li et al., 2011a). 
This algorithm however, does not allow us to study the impact of climate change on FWP. For this type of 
study we have developed an alternative approach which calculates FWP using climate simulated (modelled) 
data of current climate conditions (later part of the 20th century). 

This study is important in the process of assessing the fire weather danger faced by communities that are 
located some distance from the nearest meteorological observing stations. It is also possible to obtain a 
preliminary and empirical calculation of the risk to these communities posed by high FFDI by employing the 
link between high FFDI with house loss for the Australian region as detailed in Blanchi et al. (2010). 

In practical applications the actual fire weather potential for a region depends on the type of vegetation in the 
region. In some regions an FFDI would not be the most appropriate index, for instance in the savannas of 
northern Australia which are dominated by grassland. In these cases the GFDI would be a more appropriate 
index to use (Cheney and Sullivan, 1997). In more complex vegetations a combination of both forest and 
grassland indexes weighted by a factor, could be a better indicator of fire danger (Cechet et al., 2013). 

2.    RETURN PERIOD OF FFDI  

Natural hazards can be quantified by using the Average Recurrence Interval (ARI) more commonly known as 
the return period (RP) of the natural phenomenon. If a given value of the phenomenon, termed ‘return level’, 
is exceeded with probability ‘p’ on average once a year, the RP corresponding to this return level is 1/p years 
(Coles, 2001). For instance, if the average annual probability of exceeding a gust wind speed of 45 m/s at 
some location is 0.002, the 500-year RP (1/0.002) of gust wind speed at the location is 45 m/s, i.e. it is 
expected that the value 45 m/s is exceeded, on average, once every 500 years. 

The concept of RP is particularly useful to assess the long-term tendency of extreme values, the values of 
interest in hazard studies. In this case, we can fit an extreme value distribution to the tail of the data and 
extrapolate to a range of years well beyond the number of years available in the dataset (Coles, 2001). 

Based on McArthur’s work, Noble et al. (1980) developed an expression that relates the climatology with the 
forest dryness conditions at a given region, 

45.0*0234.0*0338.0*0345.0)ln(*987.0exp(*2 −++−= WSTRHDFFFDI               (1) 

where  DF = Drought factor (a measure of forest dryness conditions), RH = Relative humidity (%),  

T = temperature (°C) and WS = wind speed (km/h). 
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 Figure 1 shows the RP of FFDI at the Sydney airport station. The circles are RP calculated from the 
observations and the solid line is the RP calculated using the Generalised Pareto Distribution (GPD). The 
dashed lines indicate the 95% confidence interval (CI) for the GPD fit. Note that the accuracy of the results 
decrease for higher RP, indicating a higher degree of uncertainty when making inferences beyond the range 
of the data (40 years). To illustrate the methodology for spatial interpolation, the 50-yr RP of FFDI will be 
discussed in this paper as it represents the key RP for planners and emergency managers. The methodology 
could be extended to 100-yr or 500-yr RP if applications for these RPs are determined. 

  

 

                                      Figure 1.  RP of FFDI at Sydney airport (solid line) with the 95% CI  
        (shown as the dashed lines). 

 

In this study we assume that the time series of FFDI, calculated from 40 years of observations, is stationary, 
i.e. the parameters of the distribution do not change over this period. Possible change of these parameters due 
to seasonal characteristics is studied by calculating seasonal RP of FFDI (Section 4). Changes due to climate 
change are studied by using climate model simulations (Section 5). 

3.      ADVANCED INTERPOLATION ALGORITHMS 

A new generation of algorithms to calculate the spatial distribution of point-based values has been developed 
by Li et al (2011a) based on a combination of conventional algorithms, such as Inverse Distance Weighting 
(IDW) and Ordinary Kriging (OK), with machine learning algorithms, such as random forest (RF). Li et al., 
(2011a) have shown that these hybrid algorithms give more accurate results than the conventional algorithms 
over a wide range of conditions. Two hybrid algorithms were tested in this project: RF with IWD and RF 
with OK. 

The spatial interpolation algorithm requires a number of gridded auxiliary variables which are considered to 
influence FFDI. The introduction of secondary variables in spatial prediction may be important if correlation 
is high (Li et al., 2011a). Climate variables, in particular, show a strong dependency on topography and hence 
it is important to incorporate topographical information in the interpolation of these types of variables (Hong 
et al., 2005). The technique discussed in this paper allows the incorporation of a large number of auxiliary 
variables and therefore it is especially suited for the interpolation of climatic variables. Publicly available 
data sets were used in this study; most of them were recorded by BoM. 

The auxiliary variables from BoM (2012) utilised in this study are: annual and seasonal rainfall, temperature, 
relative humidity, evaporation, station location (latitude and longitude), and maximum and minimum 
temperature. Other auxiliary variables utilised in this study are: mean wind speed obtained from McVicar et 
al. (2008), enhanced vegetation index (EVI) obtained from Lymburner et al. (2010), and elevation obtained 
from Gallant et al. (2011). Together 35 secondary variables were used for the interpolation using the hybrid 
algorithms (Sanabria et al., 2013). 

The quality of the spatial distribution can be assessed by calculating the cumulative sum of the difference 
between observed and predicted values in all stations. Table 1 shows the Relative Root Mean Squared Error 
(RRMSE) and the Relative Mean Absolute Error (RMAE), two widely used indicators of the prediction 
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accuracy. Errors around 25% are considered normal for this type of application (Li et al., 2011). Table 1 
indicates that the hybrid RF-IDW algorithm produces the best results. 

Figure 2 shows the spatial distribution of the 50-yr RP of FFDI using the RF-IDW algorithm. The black 
circles indicate the location of the 38 recording stations.                

 

Figure  2. Spatial distribution of the 50-yr RP of FFDI 

               using the RF-IDW algorithm. 

4. SEASONAL CHARACTERISTICS OF FFDI 

Given the large range of climates with varying seasonal patterns and vegetation types characterising 
Australia, it is important to show the variation of fire weather extremes in each season. Extreme fire weather 
conditions in Australia are highly dependent on the season; comparison of regional extreme fire weather in 
each season could provide additional information for emergency managers to plan bushfire mitigation 
measures. In data was split in to the four seasons and the procedure discussed above was repeated. Figure 4 
shows the seasonal 50-yr RP of FFDI. For a more detailed assessment of fire weather danger we present the 
50-yr RP map using a discrete scale similar to the scale used by emergency authorities (BoM, 2013). In the 
original calculation of FFDI by McArthur, the FFDI value was calibrated to have a maximum of 100 for what 
was considered at the time the worst possible fire weather conditions in Australia. In reality, however, Lucas 
(2010) has shown that this value has been exceeded in severe to extreme fire weather situations. In this work 
therefore we use an extended scale with the highest value indicating FFDI greater than 150. 

The highest value for the 50-yr RP of FFDI over large parts of Australia is observed in summer and spring 
(for the northern part of the continent), whilst the lowest value of the 50-yr RP is observed in winter (as 
expected). Different regional weather patterns reflect the varied fire seasons. The northern part of the 
Australian continent typically experiences most of its fires in winter and spring. For most of southern 
Australia, the danger period is summer and autumn. For Tasmania and the southern-most coastal part of the 
continent, the summer season dominates the period of concern regarding bushfires. New South Wales and 
southern Queensland usually experience the peak hazard of extreme fire weather in spring and early summer. 
It should be noted that the hazard of extreme fire weather along the southeastern coast of Australia (including 
all of New South Wales) is higher inland than in the coastal areas particularly in summer and spring. 

5.   RP OF FFDI USING “CURRENT CLIMATE” SIMULATED DATA 

To develop a model to calculate FFDI based on climate model simulations we use the high resolution climate 
simulations generated by the ‘Climate Futures for Tasmania’ (CFT) project (Corney et al., 2010). The CFT 
team generated the simulations using dynamical downscaling of six general circulation models (GCM) and 
the NCEP/NCAR reanalysis data (2013), using CSIRO’s Conformal Cubic Atmospheric Model (McGregor 
et al., 2001).  

 

 
 
Table 1. Assessing the quality of 
the spatial prediction of FFDI 
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Figure 4. The predicted spatial pattern of 50-year RP of FFDI in a) Summer (December, January  
               and February), b) Winter (June, July and August), c) Autumn (March, April and May), 
               and d) Spring (September, October and November) using RF-IDW. 
 

The simulated climate-model data include relative humidity at different pressure levels at 3-hour intervals. 
To calculate maximum FFDI using (1), we extracted the level 1 relative humidity calculated at 06 hours UTC 
time, corresponding to 4 PM in Australian south eastern states. At this time of the day RH tends to be lowest 
and hence the FFDI tends to peak (Lucas et al., 2007). For temperature, the maximum daily screen 
temperature was used. For wind speed we used the maximum daily 10m height (open terrain) extracted from 
the simulations. Both the climate simulations and the BoM-provided DF dataset had to be re-gridded to a 
common grid of 0.5x0.5 degrees. The drought factor is a dimensionless variable ranging between 0 and 10 
representing the amount of fine fuel that would be available to be consumed in the flaming front of a bushfire 
(McCarthy 2003). The BoM has calculated gridded daily drought factors over Australia since 1964 at a 
resolution of 0.25° (Finkele at al. 2006), and these data were employed when calculating FFDI.  

The CFT simulations relevant for this project cover only the south-eastern part of Australia. Figure 5a shows 
the 50-yr RP of FFDI calculated from the CFT simulation driven by the NCEP/NCAR reanalysis data. Thirty 
years of climate-model simulated data from 1965 were used in order to study the behaviour of FFDI under 
current climate conditions. Note the empty polygons in the central and western parts of Australia as the 
drought factor data provided by BoM does not include values in these regions. Figure 5b shows the 
difference in percentage between observed and climate simulated RP of FFDI (difference between Figure 2 
and Figure 5a). 

The pattern of fire weather potential from observed and simulated data was consistent with very high values 
in the central part of southern Australia and medium values in the south-eastern corridor. Figure 5b shows the 
bias (%) of simulated FFDI when compared against observations. High positive bias occurs in the regions of 
high FFDI indicating a tendency of the simulations to underestimate the FFDI. In the regions of medium 
FFDI the reverse can be observed; the simulations overestimate the FFDI. Figure 5b shows that it is 
necessary to develop a bias correction procedure in order to have confidence in the climate simulation based 
model to study fire weather potential in Australia 
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                    Figure 5a. 50-yr RP of FFDI using            Figure 5b. Difference (%) between observed and  
                               climate simulations.                                          simulated 50-yr RP of FFDI. 
 

6. CONCLUSIONS 

A methodology to study the long-term tendency of extremes of fire weather potential has been presented. 
Implementation of this methodology in Australia shows that fire weather is highly dependent on the season 
and the region of the country: in the northern states of Australia the bushfire season extends from spring to 
summer; for most of southern Australia the danger period is summer and autumn; in Tasmania the bushfire 
season occurs in summer. 

Mapping of extreme fire weather potential can be an important tool for bushfire risk management. It will 
assist emergency managers to prepare mitigation procedures for each region of Australia in the season of 
high FFDI.  

The impact of climate change on the long-term tendency of FWP can be studied using climate model 
simulations. Comparison of FWP using observations and climate model simulations show that both models 
produce similar patterns of Fire Weather danger but climate simulation results show a bias which needs to be 
corrected. We are developing an algorithm for bias correction of climate simulation based RP calculation in 
order to produce a more robust model for FWP. Once the model has been calibrated we can study the impact 
of climate change on FFDI using simulations of a range of 21st century climate projections. 
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