
RoseDist: Generalized Tool for Simulating with
Non-Standard Probability Distributions

Jonathan Feinberga, Stuart Clarka

aSimula Research Laboratory, PO 134, 1325 Lysaker, Norway
Email: jonathfe@simula.no

Abstract: Monte Carlo simulation is the most popular technique for performing uncertainty quantification
for being easy to implement and requiring very few assumption on the behavior of the model. However, in
cases where model evaluations are computational costly, the technique can be become too expensive since
Monte Carlo requires a high number of evaluations to get reasonable accuracy. To mitigate this cost, various
variance reduction techniques have been introduced to increase the convergence rate. Unfortunately these
techniques are only just making in-roads into computational modelling because of their inherent complexity
and interdependence. RoseDist is a software toolbox in Python designed to make most variance reduction
technique accessible, in an object-oriented sense, to numerical modellers from various disciplines.

Keywords: Monte Carlo simulation, Quasi-Monte Carlo, Rosenblatt transformations, Copulas, Variance
re-duction, Custom constructor

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013
www.mssanz.org.au/modsim2013

366

J. Feinberg, S. Clark, RoseDist Generalized Tool for Simulating with Non-Standard Probability Distributions

1 INTRODUCTION

By far the most popular technique for performing uncertainty quantification on numerical modelling is the
Monte Carlo method. This method is relatively simple to setup and versatile enough to be applied to many
different models. However in cases where model evaluations have a high computational cost, Monte Carlo
becomes prohibitive because the method requires a high number of evaluations to obtain reasonable accuracy.
Numerous alternative uncertainty quantification methods have been developed that significantly improve the
convergence rate using variance reduction techniques. These techniques include quasi-Monte Carlo, Latin
hypercube sampling, antithetic variables and control variables. An overview of the techniques can for example
be found in (Kroese et al., 2011). However, these techniques increase the complexity of programming involved
and most of the methods assume that the input variables are either uniform on a hypercube, or simple in each
dimension.

In this paper we introduce RoseDist, a software toolbox in Python that allows for construction of Monte
Carlo schemes with most variance reduction techniques combined with multiple techniques for modeling
dependencies between the variables. In RoseDist advanced dependencies can be modelled easily with both
a large built-in collection of probability distributions and an easy to use constructor of custom distribution as
building blocks. Methods for modelling such dependencies include a full transformation like the Rosenblatt
method (Rosenblatt, 1952), which can map any samples to and from the unit hypercube, or an approximation
like the Nataf (Nataf, 1962). Copulas are also used to determine parameter dependencies (Nelsen, 1999).

The software created is open source and can be downloaded from bitbucket as part
of a larger package called polychaos; it can be downloaded from the webpage
https://bitbucket.org/jonathf/polychaos. The reference documentation can be found at
http://home.simula.no/˜jonathfe/polychaos/dist. Importing the software is done as fol-
lows:

>>> from polychaos import dist as di
>>> import numpy as np

This paper is structured as follows. Section 2 outlines a tutorial giving an overview over how the software
works through an example. In Section 3, the theoretical background of Rosenblatt transforms is described
together with it’s implementation counterpart. How to construct function estimates and inverses is described
in Section 4, whereas Section 5 discusses how copulas can be integrated into the framework. Section 6 will
describe how the software can be used to perform the various Monte Carlo schemes. Finally, conclusions and
suggestion to further work is discussed in 7.

2 TUTORIAL

This section will illustrate how the toolbox RoseDist can be used to simulate a simple test case using various
variance reduction techniques. To start off, consider the following as our model solver:

>>> def model_solver(q):
... return q[0]*np.e**-q[1]

where q represents the model parameters. To define this as a uncertainty quantification problem let q be
defined as a bivariate log-uniform random variable Q with an Ali-Mikhail-Haq copula; our goal is to quantify
the model mean.

Constructing this copula in RoseDist can be defined as follows:

>>> dist = di.Iid(di.Loguniform(0,1), 2)
>>> Q = di.Ali_mikhail_haq(dist, theta=0.5)

To reduce the variance, we use Latin hypercube samples instead of standard psuedo-random generated sam-
ples. These samples can then be used to evaluate our model solver. These samples are generated as follows:

>>> samples_Q = Q.sample(1000, "L")
>>> samples_out = np.array([model_solver(s) for s in samples_Q.T])

Figure 1 shows both random samples and the density function.

367

J. Feinberg, S. Clark, RoseDist Generalized Tool for Simulating with Non-Standard Probability Distributions

��� ��� ��� ���
�
�

���

���

���

���

�
�

��� ��� ��� ���
�
�

���

���

���

���

�
�

Figure 1: Scatters of Latin hypercube samples and probability density function of a log-uniform random
variable with an Ali-Mikhail-Haq copula.

When estimating the mean, the use of a control variable reduces the variance still further. First, find a random
variable R closely dependent on the estimate of interest with a known mean. In RoseDist dependent vari-
ables can be constructed through iso-probabilistic transformations. Any random variable can then be chosen
as long as it is sufficently close to the quantity of interest. For our example, we choose to use a log-uniform
distribution, since the distribution is already a part of the definition of the variable. As iso-probabilistic trans-
formations do not change the number of variables, we select two control variables, one along each axis.

To create samples for the control variables, we use forward and inverse transformations between Q and R:

>>> R = di.Loguniform(0,1)
>>> samples_R1, samples_R2 = R.inv(Q.fwd(samples_Q))

We use this to create or control variables and implement them:

>>> alpha1 = np.cov([samples_out, samples_R1])[0,1]/di.Var(R)
>>> samples_out -= alpha1 * (samples_R1 - di.E(R))
>>>
>>> alpha2 = np.cov([samples_out, samples_R2])[0,1]/di.Var(R)
>>> samples_out -= alpha2 * (samples_R2 - di.E(R))

After the samples are ready, they can be used to create a mean:

>>> print np.mean(samples_out)
0.353670384341

3 ROSENBLATT TRANSFORMATIONS

Forward transform FQ Inverse transform F−1
Q

s1=FQ1(r1) r1=F−1
Q1

(s1)

s2=FQ2|Q1
(r2 | r1) r2=F−1

Q2|Q1
(s2 | r1)

s3=FQ3|Q1,Q2
(r3 | r1, r2) r3=F−1

Q3|Q1,Q2
(s3 | r1, r2)

.
sN=FQN |Q1,...,QN

(rN | r1, . . . , rN−1) rN=F−1
QN |Q1,...,QN

(sN | r1, . . . , rN−1)

Table 1: Forward and inverse Rosenblatt transformation

368

J. Feinberg, S. Clark, RoseDist Generalized Tool for Simulating with Non-Standard Probability Distributions

The fundamental building block of a random variable in RoseDist is the invertible Rosenblatt transform.
Rosenblatt transforms are applied to a probability distribution to give an orthogonal decomposition that is
measure preserving (Rosenblatt, 1991). The transformation has applications in goodness of fit tests and the
modelling of residuals (Brockwell, 2007). Given a random variable Q the transformation is defined from the
probability density function decomposition:

pQ = pQ1,...,QN
= pQ1pQ2|Q1

pQ3|Q1,Q2
· · · pQN |Q1,...,QN−1

. (1)

By integrating each element in the vector along it’s respective axis we get

FQn|Q1,...,Qn−1
(qn | q1, . . . , qn−1) =

� qn

−∞
pQn|Q2,...,Qn−1

(q | q1, . . . , qn−1)∂q. (2)

This vector of cumulative distribution is used as a transformation. Table 1 shows a generic Rosenblatt trans-
formation FQ : r �→ s and its inverse. F−1

Q .

Distributions
Arcsin, Beta, Gamma, Hyperbolic Secant, Laplace, Logistic, Lognormal, Normal, Raised Cosine,
Student-t, Triangle, Uniform, Weibull, Wigner

Table 2: List of built-in probability distributions.

The Rosenblatt transform is constructed via the cumulative distributions defined in (2), while predetermined
distributions are listed in table 2. In addition, it is possible to construct user-defined distributions through
the di.construct function. For example the minimum code to create an uniform random variable is as
follows:

>>> Uniform_minimum = di.construct(
... cdf=lambda self,q,a,b: (q-a)/(b-a),
... bnd=lambda self,a,b: (a,b))

Here cdf is the dependent cumulative distribution function as defined in equation (2), bnd is a function return-
ing the lower and upper bounds, and a and b are distribution parameters. As an alternative to a minimalistic
construction, it is possible to make a more complex variable by adding a few additional keywords:

>>> Uniform = di.construct(
... cdf=lambda self,q,a,b: (q-a)/(b-a),
... bnd=lambda self,a,b: (a,b),
... pdf=lambda self,q,a,b: 1./(b-a),
... ppf=lambda self,u,a,b: u*(b-a)+a,
... mom=lambda self,k,a,b: (b**(k+1)-a**(k+1))/(k+1)/(b-a),
... defaults=dict(a=0., b=1.),
... str=lambda self,a,b: ("u%s%s" % (a,b)))

If the keywords are not provided during construction, the distribution parameters are estimated as far as possi-
ble.

Creating dependencies in the model is done by inserting another distribution as a model parameter during
initialisation. For example, to create a normal distribution with a uncertain mean, using our custom uniform
variable, can be done as follows:

>>> u1 = Uniform(a=1, b=2)
>>> u2 = Uniform(a=0, b=u1)
>>> joint = di.J(u1, u2)

Note that the uniform distribution’s upper parameter is a scaling parameter given that the lower parameter is
0. Since scaling is equivalent to multiplying the random variable, we could reformulize the joint distribution
as follows:

369

J. Feinberg, S. Clark, RoseDist Generalized Tool for Simulating with Non-Standard Probability Distributions

>>> u3 = Uniform(a=0, b=1)
>>> joint = di.J(u1, u1*u3)

Since the primary building block is the Rosenblatt transformation, we are required to construct the structure
given Table 1. This requirement is fulfilled by creating a bivariate distribution with one independent and one
dependent variable. With the transform constructed, the sofware will be able to sort out all the dependencies
at runtime.

4 INVERSE TRANSFORMATIONS AND APPROXIMATIONS

One of the fundamental properties of the Rosenblatt transformation is that it can map random samples between
distributions. Given that a random variable Q is mapped through its associated Rosenblatt transformation FQ,
then the variable U = FQ(Q) will be uniformly distributed on the [0, 1]N hypercube. The components
U1, . . . , UN will also be stochastically independent, irrespectively if Q was so to begin with. Likewise if U is
uniformly distributed on the unit hypercube, using the inverse transformation Q = F−1

Q (U) will have density
pQ. With a double transformation, the random samples Q ∼ pQ can be mapped to any density pS : First, map
the samples to the unit hypercube U = FQ and then map them to the target distribution S = F−1(U). A
difficulty with this procedure is that the inverse transformation is needed and in may be unavailable.

In di.construct an inverse can be provided through the ppf argument (point percentile function). If ppf
is not provided, it is instead estimated using a root-finding algorithm. In this case, a hybrid between Newton-
Raphson and the bisection method will be used. The former is used because of it’s rapid convergence; the
latter for it’s convergence guarantee. If a Newton-Raphson iteration fails to converge, the bisection method
provides a new start location a significant distance from the beginning of the previous iteration.

The hybrid method is described below. The objective function and it’s derivative are defined as follows:

g(q) = FQn|Q1,...,Qn−1
(q | q1, . . . , qn−1)− u

g
�
(q) = pQn|Q1,...,qn−1

(q | q1, . . . , qn−1),

where u is the input to the point percentile function. The derivative follows from the definition in equation
(2). From bnd we can select the following initial values q = (qu − ql)u + ql. At each iteration q is updated
using a Newton-Raphson step. If the new value is on the interval [ql, qu], then accept it, else use a bisection
increment q = (qu + ql)/2. In either case, ql and qu are updated using q and the sign of g(q). The algorithm
ends if either g(x) ∈ [−ε, ε] for some tolerance level ε or the number iterations is superseded.

For the code to work, the probability density function has to be available. If the function is available analyti-
cally, this can be done by adding the pdf keyword to pc.construct. If the density is not available, it can
be estimated through a finite difference scheme:

pQn|Q1,...,Qn−1
(q | q1, . . . , qn−1) ≈

FQn|Q1,...,Qn−1
(q + h | q1, . . . , qn−1)− FQn|Q1,...,Qn

(q | q1, . . . , qn−1)

h
,

where h is a small constant.

5 COPULAS

Supported Copulas Ali-Mikhail-Haq, Clayton, Frank, Gumbel, Normal (Nataf), Joe

Table 3: The list of supported copulas

The Rosenblatt transformation is not the only way to model dependencies through an iso-probabilty trans-
formation; other methods, such as copulas, are seeing increasing popularity. Copulas are especially useful
for various applications for which there are complex non-linear relationships between parameters. Recent
examples include regional and global modelling of climate (Laux et al., 2010), iron-ore mineral parameters

370

J. Feinberg, S. Clark, RoseDist Generalized Tool for Simulating with Non-Standard Probability Distributions

(Boardman and Vanna, 2011) and the relationship between returns and assests in finance (Dobri and Schmid,
2007).

An independent multivariate cumulative distribution function made dependent through an copula can for ex-
ample be defined

FQ1,...,Qn(q1, . . . , qn) = C(FQ1(q1), . . . , FQn(qn)),

where C is the copula, and FQi are marginal distribution functions. One of the more popular classes of copulas
is the Archemedian copulas (Sklar, 1996). They are defined as follows:

C(u1, . . . , un) = φ[−1](φ(u1) + · · ·+ φ(un)),

where φ is a generator and φ[−1] is its pseudo-inverse. Fitting the Arcemedian copulas into the Rosenblatt
transformation framework is also possible. This combination is done as follows:

C1(u1) = φ[−1](φ(u1))

C2(u2 | u1) =
∂

∂u1
φ[−1](φ(u1) + φ(u2))

C2(u3 | u1, u2) =
∂2

∂u1∂u2
φ[−1](φ(u1) + φ(u2) + φ(u3))

...

These components then follow the structure of an inverse to a Rosenblatt transform and can be used directly
in our software. In table 3, there is a list of the copulas currently supported in RoseDist.

6 QUASI-MONTE CARLO AND VARIANCE REDUCTION SCHEMES

Sampling Schemes
Antithetic variables (Rubinstein and Kroese, 2007), Halton sequence (Halton, 1960),
Hammersley sequence (Hammersley, 1960), Korobov latice (Korobov, 1957),
Latin Hypercube sampling (McKay et al., 1979), (Pseudo-)Random, Sobol sequence (Sobol, 1967)

Table 4: List of different methods for generating (pseudo-)random, quasi-random and variance reducing tech-
niques supported in the software.

With a fully functional Rosenblatt transformation available, samples can be mapped between any domain.
However, there are no requirement that the samples should be of the traditional (pseudo-)random kind. Sam-
ples of any type, even quasi-Monte Carlo samples or samples from variance reduction techniques, like Latin
hypercube sampling, can also be mapped. In table 4 a list of schemes for generating and manipulating samples
on the unit hypercube that are supported in RoseDist.

Most of the methods in table 4 can be accessed by adding a letter as second optional argument to the instance
method sample. The corresponding letter to each method is underlined. For example to create samples from
the Halton sequence:

>>> print joint.sample(4, "H")
[[1.125 1.625 1.375 1.875]
[0.5 1.26388889 0.30555556 1.04166667]]

The only exceptions are antithetic variables. With an antithetic variable, which axes to mirror has to be
specified. In RoseDist the method is evoked by providing a list of boolean values as keyword argument.
For examples for the user defined distribution in the last section we could mirror the first axis as follows:

>>> samples = joint.sample(4, antithetic=[True, False])
>>> print joint.fwd(samples)
[[0.38228023 0.94536045 0.61771977 0.05463955]
[0.64698907 0.18033883 0.35301093 0.37072438]]
>>> print 1-joint.fwd(samples)
[[0.61771977 0.05463955 0.38228023 0.94536045]
[0.35301093 0.81966117 0.64698907 0.62927562]]

371

J. Feinberg, S. Clark, RoseDist Generalized Tool for Simulating with Non-Standard Probability Distributions

By mapping the samples back the unit hypercube the antithetic effect can be observed along the first axis. In
addition, constructing your own scheme is also possible. To do so, create samples on the unit hyercube and
use the inv instance method to map samples to the target distribution.

7 CONCLUSIONS

This paper has introduced the RoseDist toolkit. In addition to being able to creating a Monte Carlo
sampling scheme, the toolkit has support for: quasi-Monte Carlo methods; advance dependencies through
Rosenblatt and copulas; and variance reduction techniques like Latin hypercube sampling, control vari-
able and antithetic variables. The software is designed to be easy to use, but also be able to be eas-
ily extendable for user defined probability distributions and sampling scheme and is publicly available via
https://bitbucket.org/jonathf/polychaos.

REFERENCES

Boardman, R. C. and J. E. Vanna (2011). A review of the application of copulas to improve modelling of
non-bigaussian bivariate relationships (with an example using geological data). In International Congress
on Modelling and Simulation.

Brockwell, A. E. (2007). Universal residuals: A multivariate transformation. Statistics & probability let-
ters 77(14), 14731478.

Dobri, J. and F. Schmid (2007). A goodness of fit test for copulas based on rosenblatt’s transformation.
Computational Statistics & Data Analysis 51(9), 4633—4642.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals. Numerische Mathematik 2(1), 8490.

Hammersley, J. M. (1960). Monte carlo methods for solving multivariable problems. Annals of the New York
Academy of Sciences 86(3), 844874.

Korobov, N. M. (1957). The approximate calculation of multiple integrals using number theoretic methods
dokl. Acad. Nauk SSSR 115, 10621065.

Kroese, D. P., T. Taimre, and Z. I. Botev (2011). Handbook of Monte Carlo Methods, Volume 706. John Wiley
& Sons.

Laux, P., G. Jckel, R. M. Tingem, and H. Kunstmann (2010). Impact of climate change on agricultural
productivity under rainfed conditions in CameroonA method to improve attainable crop yields by planting
date adaptations. Agricultural and Forest Meteorology 150(9), 12581271.

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). Comparison of three methods for selecting values
of input variables in the analysis of output from a computer code. Technometrics 21(2), 239245.

Nataf, A. (1962). Dtermination des distributions de probabilites dont les marges sont donnes. Comptes rendus
de lacademie des sciences 225, 42–43.

Nelsen, R. B. (1999). An introduction to copulas. Springer.

Rosenblatt, J. (1991). Automatic continuity is equivalent to uniqueness of invariant means. Illinois Journal of
Mathematics 35(2), 339—348.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of Mathematical Statistics 23(3),
470–472.

Rubinstein, R. Y. and D. P. Kroese (2007, December). Simulation and the Monte Carlo Method (2 ed.).
Wiley-Interscience.

Sklar, A. (1996). Random variables, distribution functions, and copulas: a personal look backward and for-
ward. Lecture notes-monograph series, 114.

Sobol, I. M. (1967). On the distribution of points in a cube and the approximate evaluation of integrals. USSR
Computational Mathematics and Mathematical Physics 7(4), 86112.

372

