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Abstract: Daily rainfall data are one of the basic inputs in hydrological and ecological modeling and in 
assessing water quality. However, most data series are too short to perform reliable and meaningful analyses 
and possess significant number of missing records. The study focuses on developing a methodology to fill the 
gaps in daily rainfall series considering data of twenty rainfall stations from Brahmani Basin, Rachi, India. A 
probabilistic approach is adopted to generate data for filling on missing points.  

The Poisson-gamma (PG) distributions were explored in the study as they possess useful properties to 
simultaneously model both the continuous (rainfall depth) and discrete (rainfall occurrence) components of 
daily rainfall. First, the PG distributions were fitted to the daily rainfall data of targeted stations and the 
parameters were estimated. The models were compared with the widely used inverse distance interpolation 
method. To compare the fit of the models, a dataset of size equal to the size of the observed dataset were 
generated. The means and percentages of days with no rainfall of observed and simulated datasets were very 
similar. However, PG distributions slightly overestimate the 95th percentile and underestimate the variance 
and 99th percentile. This indicates that the models do not capture well the extremely heavy rainfall events; 
hence, the PG distributions need to modify to capture better the extreme events. However, with respect to all 
statistics, the PG model performs better than the inverse distance interpolation method. 

The methodology considers two basic assumptions. 

• The rainfall data of missing period have similar statistical properties to the data from available periods. 
Fairly large amounts of data exist to generalize the parameters from the available periods to the points 
with no data. The assumption is also supported by the fact that, for the studied stations, the first and 
second halves of the available datasets possess similar statistical properties.  

• Spatial correlations exist among rainfall occurrence and amounts of neighboring stations. The fact is 
reasonable as fairly negative relationship were observed between correlation of daily rainfall and 
distances among the studied stations. 

Once the PG distributions were decided, samples were generated with the parameters of respective stations. 
The generated data for a station is completely random in nature and independent of the rainfall amounts of 
neighboring stations. To match the data, first the rainfall amount of the region is estimated as the weighted 
mean of rainfall amounts from four closest stations. Weights were taken as the inverse of the distances of the 
neighboring stations from the target station. Days were sorted from driest to wettest on the basis of the mean 
rainfall amounts of neighboring stations, and finally, the generated data were matched. 

Instead of using two separate models for generating continuous data (rainfall depth) with exact zero (no 
rainfall), the proposed method use a single model to model both components of daily rainfall simultaneously. 
The method resolves the problem of overestimating non-zero rainfall amount that arises while using 
traditional interpolation methods. However, the method may not work well when the neighboring stations are 
not close to the target station.  
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1. INTRODUCTION 

Daily rainfall data are one of the basic inputs in hydrological (e.g. streamflow, rainfall-runoff, recharge) and 
environmental (e.g. crop yield, drought risk) models and in assessing water quality. However, most daily 
rainfall data series are too short to perform reliable and meaningful analyses and possess significant number 
of missing records (Elshorbagy et. al., 2000; Bennett et. al., 2007; Kajornrit et. al., 2012). Filling the gaps in 
daily rainfall data is therefore a crucial issue. 

Spatial interpolation techniques are widely used methods for filling the gaps in daily rainfall series through 
estimating the unknown rainfall amount for a point from the known data from adjacent stations (Wei and 
McGuinness, 1973; Burrough and McDonnell 1998). Paulhus and Kohler (1952) explored two methods of 
interpolation, the normal-ratio and 3-station-average, to fill the missing values in monthly rainfall data. The 
Inverse Distance Weighting (IDW) methods estimate the rainfall amount of a location as a weighted average 
of the rainfall amount of adjacent stations and the weights are considered as a function of the distances 
(Teegavarapu and Chandramouli, 2005). Various IDW methods have been developed on the basis of the 
functional form of the distances. For instance, inverse of squares, higher powers or exponential of distances 
(Garcia et al., 2008; Ly et al., 2011; Chen and Liu, 2012) are used as weights. The correlation coefficients 
between data series are also explored to estimate the weights (Teegavarapu and Chandramouli, 2005; Ahrens, 
2006). Spatial interpolation methods yield non-zero rainfall amounts for a station if even just one of the 
neighboring stations has rainfall, and hence, due to the poor sampling by rainfall gauge networks, tend to 
significantly overestimate the number of rainy days. Moreover, the errors in estimating the missing records 
due to the faulty measurement process of rainfall at neighbouring stations can’t be ignored (Teegavarapu 
2009). 

Regression based methods are also used for estimating 
missing precipitation values (Presti et. al., 2010). 
Regression models consider climate data, elevation, 
topography, proximity to coastal area etc. as explanatory 
variables to estimate missing rainfall series of a station 
(Daly et. al., 1994). Some regressive techniques 
explored in filling missing daily rainfall series include: 
simple substitution, parametric regression, ranked 
regression, and the Theil method (Presti et. al., 2010). In 
addition to spatial interpolation and regression methods, 
neural network algorithms are also explored for 
imputation of missing precipitation values (Malek et al., 
2009). The neural network algorithms adapt the 
weighted interpolation technique from neighbouring 
stations. Regression based methods also underestimate 
the number of days with no rainfall (Simolo et. al., 
2010). 

Simolo et. al., (2010) proposed a two steps probabilistic 
approach to fill the missing values in rainfall series. First, weighted average of rainfall amounts of 
neighbouring stations is obtained and the days with rainfall amount below a threshold is considered as dry. 
The threshold is estimated on the basis of the probability of no rainfall in the original data series. Then the 
rainfall amount of wet-classified days is estimated by multivariate regression considering the rainfall series 
form the surrounding stations as explanatory variables. Two parameter Gamma distributions were fitted to 
the original rainfall series. Finally, to correct for the bias induced by fit in multivariate regression, the 
generated values are forced to satisfy the daily probability distribution associated with the original series.   

To avoid the use of an arbitrary threshold (as in Simolo et al., 2010), this study focuses on filling the missing 
values of daily rainfall series with data generated from the appropriate probability distributions and 
parameters estimated from available rainfall data of respective stations. The generated data are reorganized 
on the basis of the wetness condition of the region measured as the weighted average of the rainfall from 
adjacent stations. The Poisson-Gamma (PG) distributions were adapted here to model occurrence and amount 
of daily rainfall simultaneously. 

The method has the advantages that it explores the various statistics and the probability distribution of 
rainfall of the target station.  The method also resolves the problem of overestimating non-zero rainfall 
amount that arises while using traditional interpolation methods.  

           Figure 1. Location of studied stations 
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Figure 3. Distribution of non-zero daily rainfall of four 
stations 

2. DATA AND STUDY REGION 

Daily rainfall data of twenty stations from 
Brahmani Basin, Rachi, India (Croke et. 
al., 2011) were considered in this study 
(Figure 1). The basin is located between 
longitude 83.97ºE and 86.60ºE and latitude 
from 20.10ºN to 23.42ºN. Data ranges 
from 1st of January, 1969 to 31st of August 
2004. However, none of the stations have 
data for the entire period, with about half 
of the studied stations having less than fifty 
percentage coverage due to gaps in the data 
(Figure 2).  

3. METHODS 

The aim of the study was to develop a 
probabilistic methodology to fill the gaps 
in daily rainfall data. Instead of simple, 
direct interpolation methods, statistical 
properties (distribution, average and 
dispersion) were used to generate data for 
missing points. One of the major 
challenges in generating daily rainfall 
data is that, the data are highly right 
skewed (long tail to the right) and 
continuous with lots of exact zeros (Table 
1 and Figure 3). For better visualization, 
Figure 3 is constructed with only four 
stations; however the other stations have 
very similar properties in the context of 
skewness of the data.  

For filling missing values in the rainfall 
series of a station, two basic assumptions 
were made: 

• The missing rainfall values have 
similar statistical properties to the 
data from available periods. Fairly 
large amounts of data exist to 
generalize the parameters from the 
available periods to the points with 
no data. This assumption is also 
supported by Table 1, which 
indicates, almost everywhere, the first and second halves of the available datasets have similar 
properties.    

• Spatial correlations exist for rainfall occurrence and amounts between neighboring stations. The fact is 
supported by Figure 4 which indicates fairly negative relationship between correlation of rainfall 
amounts and distances among the stations.  

To fill the gaps in rainfall series, first, appropriate probability distribution of daily rainfall data of studied 
stations were decided. Daily rainfall data are highly positively skewed (have a long tail at the right) and have 
lots of exact zeros (days with no rainfall).  Hasan and Dunn (2010, 2011) showed that Poisson-Gamma (PG) 
distributions fit well to the monthly rainfall data from Australian stations. The distributions prove to be 
adequate for simultaneously modelling both the continuous (rainfall depth) and discrete (rainfall occurrence) 
components of daily rainfall. The similar approach is adopted here for daily rainfall data. 

The PG is a three parameter distribution and the parameters are mean μ, dispersion parameter φ, and index 
parameter p. The parameters (μ, φ and p) of PG distribution of each station were estimated from the available 
datasets. 

 

Figure 2. Data coverage for studied stations. Gaps in the 
line indicate no available data for the period. 
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Table 1. Various statistics of first and second halves of the data series 

 

For generating daily rainfall data for each station 
the parameters of the PG distribution were 
estimated using the available dataset of the station. 
Using these parameters, a set of random numbers 
were generated to fill the missing values of 
respective stations using the following procedure.  

Let station ‘A’ has N missing observations. A 
dataset of size N is generated from PG distribution 
with parameters estimated from available dataset 
of station ‘A’.    

The generated data (in previous step) for a station 
is completely random in nature and independent of 
the rainfall amounts of neighboring stations. To 
match the data, first the rainfall amount of the 
region is estimated as the weighted mean of 
rainfall amounts from four closest stations. 
Weights were taken as the inverse of the distances 
of the neighboring stations from the target station. 
Considering six different interpolation methods, 
Teegavarapu et. al., (2011) concluded that, inverse 
distance based on four nearest neighbors was the 
best for the transformation of data. 

Days were sorted from driest to wettest on the basis of the mean rainfall amounts of neighboring stations. 
Sorted (smallest to largest) randomly generated data are then matched with the sorted days. Finally, days with 
the missing rainfall data were filled with the generated data 

 Mean CV 95th percentile 99th percentile %  days no rainfall 

 First Last First Last First Last First Last First Last 

Station 1 3.9 4.1 291.5 320.9 24.1 24.8 55.2 53.8 69.6 69.3 

Station 2 3.8 3.1 323.9 356.7 25.0 22.0 63.0 56.3 81.2 83.1 

Station 3 3.9 4.0 301.2 283.6 24.4 23.7 55.1 58.0 69.0 67.1 

Station 5 3.2 2.9 348.4 365 18.9 15.9 57.4 48.4 78.6 77.4 

Station 8 4.1 2.7 341.8 392.6 26.0 17.0 70.3 53.0 80.7 85.8 

Station 9 4.3 4.2 312.5 328.5 26.0 25.5 62.1 62.0 67.6 71.2 

Station 11 4.3 3.9 330.1 337.7 25.0 24.8 69.0 69.0 80.5 80.8 

Station 12 3.9 2.4 317.7 332.4 25.0 14.0 66.5 39.5 81.3 80.5 

Station 14 3.4 3.6 393.7 410.0 20.0 25.0 57.5 68.2 81.8 85.4 

Station 15 3.4 3.8 322.1 330.0 20.5 23.6 55.5 59.0 71.5 70.8 

Station 16 4.0 3.7 283.6 290.8 24.0 21.6 59.1 51.7 70.3 71.9 

Station 17 2.5 2.3 356.7 358.4 17.0 15.0 42.0 44.2 84.2 84.3 

Station 18 4.1 3.8 285.2 302.4 24.5 21.5 57.0 54.9 68.7 65.0 

Station 19 4.0 3.7 316.9 324.4 24.0 22.6 62.0 64.2 71.4 72.5 

Station 20 4.2 3.8 274.1 282.3 24.9 23.5 56.8 53.2 67.4 70.6 

Station 21 4.0 3.8 326.0 339.3 23.4 23.0 64.3 63.2 78.3 76.6 

Station 22 4.5 4.8 290.0 270.5 27.8 30.0 64.7 58.8 74.6 72.7 

Station 23 3.5 3.7 332.0 352.8 21.4 23.1 60.9 65.0 76.7 79.9 

Station 24 4.4 4.3 385.4 458.9 27.0 23.1 73.6 71.0 75.7 72.3 

Station 25 4.4 4.3 387.5 358.2 24.0 25.2 66.1 65.9 74.8 72.2 

Figure 4. Scatterplot showing the relation between 
distance of the rainfall stations and their correlation 
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4.  RESULTS AND DISCUSSION 

The various statistics, such as the mean, 
variance, 95th percentile, 99th percentile and 
percentage of days with no rainfall of observed, 
interpolated and generated datasets were 
presented by line plots in Figure 5. From the 
plots it is evident that the model generate data 
with very similar properties of observed data 
with respect to the mean and percentage of days 
with no rainfall. Whereas, for interpolated data 
the mean differ slightly and the probability of 
no rainfall differ significantly from observed 
dataset. The PG distributions underestimate the 
variability in daily rainfall data. The simulated 
data slightly overestimate the 95th percentile 
and underestimate the 99th percentile. However, 
the models capture well all the statistics than 
the interpolated datasets. The PG models do not 
capture well the extremely heavy rainfall 
events; hence, PG distributions need to be 
modified to capture better the extreme events at 
a daily time scale. Notably, the models did not 
use any predictor variable and the inclusion of 
predictor variables into the modeling 
framework may improve the performance of the simulations. The PG distributions belong to the EDM family 
and hence the predictor variables may be included into the generalised linear modelling framework. 

 

 

 

Figure 5. Line plots comparing mean, variance, 95th percentile, 99th percentile and percentage of 
days with no rainfall for modelled validation and simulated data. 

 

Figure 6. Dot plots representing the R-square values 
from generated and observed data for studied 
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To check how the method works in filling the gaps in the daily rainfall data, a timeframe is selected where 
the stations have available datasets. For the studied stations, data were generated for the period. The 
generated data were compared with the available datasets using spearman’s correlation coefficient. The 
Spearman’s correlation coefficients were used considering the non-normal nature of the data. However, the 
statistics are based on the ranked data and may be affected by lots of zeros in the data series. For the studied 
stations, the correlation coefficients range from 0.55 to 0.71 (Figure 6) indicating fairly good relationships 
between the simulated and observed datasets. Lack of fitting may be due to matching the data on the basis of 
the neighboring stations with poor correlation between rainfalls of neighboring stations at a daily time scale. 
The mean and maximum distances to the closest stations from the targeted station are 33.57 km and 65.29 km 
respectively. The interpolation is done with rainfall data from stations up to 154.58 km from the targeted 
station. A better interpolation and data match may be achieved with data from closer stations (if available).  
Finally, the observed available data with the generated infill missing data were plotted (Figure 7). The 
observed available data sets were presented by black bars and grey bars represent the filled data. With an 
overview of the plots we can conclude the method fill the missing values fairly well, however fails to 
produce some extremely large rainfall amounts. 

5. CONCLUSIONS 

This article discusses a hybrid method (a probabilistic method for data generation and interpolation method 
for matching the data points) for estimating missing data in daily rainfall series. Information regarding the 
statistical properties of historical rainfall amounts of targeted station and the rainfall amount of neighbouring 
stations were considered in the process. The missing rainfall days were filled with the data generated from 
the appropriate distribution and parameters of the targeted stations. The main focus here is to correct for 
common bias, such as the overestimation of the number of rainy days which affect traditional models. The 
method also minimises the errors in estimating the missing records due to the faulty measurement process of 
rainfall at neighbouring stations. The PG model generates data with very similar properties to the observed 
dataset with respect to the probability of no rainfall, mean rainfall amounts and 95th percentiles. However, the 
method underestimates the variability in the rainfall data and so can’t capture well the extremely large 
rainfall events. Hence a modification in the estimation procedure of PG parameters may be required. 
Moreover, the data matching procedure may not work well while considering data points for interpolation 
those are far from the targeted rainfall station.  

Figure 7. Plot showing the available and generated data for studied stations 
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