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Abstract: Root system architecture (RSA) plays an important role in water and nutrient uptake for plant
development and growth and hence in grain yield. In situ studies of RSA root architecture will assist in the
characterization of phenotypes for the purpose of identifying genotypes of cereal plants that are more stress
tolerant and are producer of higher grain yield. In this paper we present a method of 3D reconstruction of roots
with a non-destructive method, preserving the RSA and also allowing for observation of the roots growth as
function of time.

Our method was applied to corn plant seedlings in their early stage of growth. The germinated corn seeds are
grown in a transparent gel-based growth system. Observations are made with a digital camera with the growth
chamber sitting on a turntable, at different time instances of the growth. The digital images are processed
for segmentation of roots, root tip detection, and root tips are tracked as a function of angle of the turntable
motion. The elliptical trajectories of the root tips are used to calibrate the cameras. After calibration of the
imaging sensor the 3D reconstruction and modelling of the roots are done using the visual hull (space carving)
algorithm. We analyse different stages of 3D root developments in terms of roots volume as a function of time
and the number of images used in reconstruction of the RSA.

Our results show that root biomass/volume increases with time. This trend is true irrespective of the number
of images used for 3D reconstruction. The increase in root volume is approximately linear with time for
plants is in the early stage of growth. It is not very clear what will be the optimal number of images to use
in 3D reconstruction and modelling. Less number of images require less acquisition time and less processing
time, which may be important for high throughput systems. By visual inspection it can be said that the
3D reconstruction becomes more accurate and detailed with increasing number of images. We empirically
verify that the volume of reconstruction monotonically decreases increasing number of images from different
viewpoints. This is due to erroneous voxels being carved out when information from more images are being
added to 3D reconstruction.
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1 INTRODUCTION

Root system architecture (RSA) is a fundamental trait related to agricultural and natural ecosystem produc-
tivity Lynch (1995); Hammer et al. (2009); Hodge et al. (2009); De Smet et al. (2012). A cereal plant’s
yield is greatly influenced by the plants ability to adapt its RSA to the environment. Several researchers
Moreno-Risueno et al. (2010); Traas and Vernoux (2010) highlight the role of genes in regulating root growth
rate and branching patterns. Thus, automated 3D reconstruction of the RSA and from this root biomass es-
timates, applied across genetic varieties, have the potential of being an important plant physiological tools.
Several approaches using image processing and 3D reconstruction for the quantitative analysis of RSA have
been developed, Lobet et al. (2011); Clark et al. (2011); Zheng et al. (2011). Lobet et al. (2011) proposed a
semi-automated image processing technique to streamline the quantitative analysis of growth and structure de-
velopment of complex root systems. Their software, SmartRoot, is an operating system-independent freeware,
based on ImageJ and relies on cross platform standards for communication with data-analysis. Clark et al.
(2011) developed a high-throughput phenotyping method for the tracking of 3D root traits during seedling de-
velopment. Their platform has high flexibility and capacity to measure root traits at high spatial and temporal
resolution. However, most of the root features are manually selected by the user and are thus semi-automated
at best . Zheng et al. (2011) presented a scheme for high resolution, 3D root reconstruction using the concept
of a visual hull. Apart from the use of a visual sensor, other methods have been developed to obtain the RSA
of a plant. Kutschera (1960) used manual drawing to visualize RSA of a wide range of plant species, ranging
from Barley plants to Pine trees. Manual drawings are a good way to fuse human observation with field and
experimental observations. Esser et al. (2010) used neutron radiography (2-D) and tomography (3-D) to study
in situ water distributions and root structure uptake of water in lupin and maize. Mairhofer et al. (2012) used
x-ray microcomputed tomography to reconstruct the 3D RSA of root, in situ in carefully prepared soil envi-
ronment. Lidar was used for 3D reconstruction of root and was applied to crop phosphorus research in Fang
et al. (2009). Magnetic resonance imaging for the study of RSA and its different functional aspects were done
by Stingaciu et al. (2012); Uwe et al. (2011) and Pohlmeier et al. (2008).

In this paper we report our complete system developed for the 3D reconstruction and modelling of RSA for
roots grown in a transparent growth medium. The system presented here is a part of an automatic system for
root phenotyping. Visual sensor cameras are used to capture a sequence of images of the roots as a function
of rotation angle of the turntable. The turn table undergoes a single axis motion. A triangulated surface mesh
model is generated from the 3D reconstruction volume to model the roots. The method developed is analysed
in terms of the number images in the turntable sequence that are needed for the 3D reconstruction of the RSA
and the volume of the root as a function of time.

The rest of the paper is organized as follows: In Section 2 we give the modular design of our system and
briefly state the function of each modules. Segmentation, root tip detection and tracking, 3D reconstruction
are discussed in Sections 3, 4, and 5, respectively. Results are discussed and analysed in Section 6. Finally,
we conclude the paper and discuss the ideas for future work in Section 7.

2 SYSTEM DESIGN

We use a combination of preprocessing for segmentation/silhouette generation, feature detection, semantic fea-
ture identification by supervised statistical learning, tracking, self-calibration and mesh modelling. With this
combination an automated RSA reconstruction and modelling system is developed. The sequential modules
are:

1. Root images are segmented and silhouettes of each image is generated using algorithms described in
Cai and Miklavcic (2013)

2. High curvature features are detected as described in He and Yung (2008) and a regional feature descriptor
of an image patch 64×64 around high curvature point is computed using Zernike moments (Kumar et al.
(2012b)) .

3. The above detected feature points are classified into semantically meaningful feature points of being
root tip or non-root tip using the method described in (Kumar et al. (2012a)).

4. The root tips detected in each image of the sequence are tracked as a function of rotation angle and an
ellipse is fitted to the trajectory of the root tips.

5. The conics thus generated are used to obtain the parameters of the imaging setup using the method
described in Jiang et al. (2002).
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Figure 1. Block diagram schematic of the proposed root 3D reconstruction and modelling system.

(a) (b)

Figure 2. (a) is an image of 18 days old corn root at 90o rotation on the turn table and (b) is segmented root
silhouette obtained for the image and used in our implementation.

6. Visual hull reconstruction of the roots is carried out using the results of root silhouettes and the param-
eters of the imaging setup.

7. 3D voxel reconstruction is modelled into a triangulated polygonal mesh model.

Figure 1 shows the schematic of the system design.

3 SEGMENTATION AND ROOT SILHOUETTE

For segmentation of the root from its background gellan gum medium we have used the method described
in Cai and Miklavcic (2013). In this method the background gellan gum with its refracted distribution of
light is modelled as a high-order parametric surface. The local intensity is a function of the pixel location. The
parameters of the surface are obtained by sampling the image at different points in the grid using the RANSAC
Fischler and Bolles (1981) algorithm. Figure 2(a) shows a raw corn root image; its segmented silhouette is
shown in Figure 2(b). When using this silhouette for 3D reconstruction we invert the bi-level image of Figure
2(b).

4 ROOT TIP DETECTION AND TRACKING

We have used Zernike moments for representation and detection of root tips. The reason for using Zernike
moments are its nice properties of orthogonality, rotation invariance and demonstrated effective application to
bi-level images Khotanzad and Hong (1990); Teague (1980). Orthogonality of Zernike moments validates the
assumption of independence of the moments. Hence, in Gaussian mixture modelling (GMM) we can fix the
covariance matrix to be diagonal which significantly decreases the computation time thus achieving real time
processing. For the purpose of classifying an image patch Ic(x, y) or testing the classification algorithm, the
magnitudes of the nth order Zernike moments are computed and then, using Bayes rule, the density of class
root tip given the Zernike moments is computed. In our results we achieve as high as 100% true detection
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(a) (b)

Figure 3. (a) is an image of 18 days old corn root on which primary root tip detection are show in blue asterisk
and lateral root tip detections are shown in cyan asterisk. (b) is the tracking of the primary root tips in the 72
images of the image sequence and fitting of ellipse to these trajectories.

rate at the cost of less than 2.5% false alarm rate. The readers are referred to Kumar et al. (2012a) for details
of this implementation. Figure 3(a) shows an example of root tip detection. Figure 3(b) shows the tracking
of these root tips across the 72 image sequence obtained from the turntable rotation. For tracking of the
root tips we have used the method of multi-target tracking described in Kumar et al. (2006). The method
cooperatively combines Kalman filter-based motion and region tracking with an efficient geometric shape
matching algorithm. The system is fully automated requiring no manual input of any kind for initialization of
tracking. The target track initialization problem is formulated as computation of shortest paths in a directed
and attributed graph using Dijkstra’s shortest path algorithm. This scheme correctly initializes multiple target
tracks for tracking even in the presence of clutter and segmentation errors which may occur in detecting a
target. For more details of the method of tracking please refer to Kumar et al. (2006). To make the tracking
problem simple and fast we have tracked only the seminal roots and not the lateral roots. Once the trajectory of
the seminal root tips has been obtained an ellipse fitting is applied to the trajectory points using the algorithm
described in Kumar et al. (2013).

5 3D RECONSTRUCTION USING VISUAL HULL METHOD

Visual hull method is multiple view method of 3D volumetric reconstruction of the object being imaged.
Object’s silhouettes are used to reconstruct the object by finding the common intersection of visual cones
formed by the object’s silhouettes and the camera centres. The silhouettes determine whether each voxel in
the total volume belongs to the object or not by projecting a line-of-sight ray from the camera centre. This
approach to volume reconstruction was developed by Laurentini (1995). For our 3D reconstruction we have
used the method described by Forbes et al. (2003) and the codes provided by them. There are other methods
of fast 3D reconstruction Yous et al. (2007), which can be applied is camera parameters are known. After 3D
reconstruction the voxel representation of the plant is converted to a polygonal mesh model.

6 RESULTS

In results we show the 3D reconstruction and modelling of a corn root at its different stages of development
and also when different number of images are used for reconstruction of the root. Figure 4. shows the recon-
struction of the RSA at: day 6 - (a), day 10 - (b), day 14 - (c), and day 18 - (d). These reconstructions are
sufficiently detailed and truly portrays the complex 3D structure of RSA. Models in these images have been
developed using all 72 images from the turntable image sequence. Figure 5. shows the reconstruction of the
root with different number of images used for 3D reconstruction: 12 images - (a), 24 images - (b), 36 images
- (c), 48 images - (d) , 60 images - (e) and 72 images - (f). The results are when the plant is at day 14th of
its growth. There are subtle differences in these 3D models of the root. As the number of images in the 3D
reconstruction are increased the fine structures of the RSA are captured and represented in the 3D model. This
can be noted by observing the longest seminal root in these models. This seminal root is longest and more
vividly captured in Figure 5 (f) than the other images. The stoutness of the models from Figure 5 (a)-(f) seems
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(a) (b)

(c) (d)

Figure 4. (a, b, c, d) are the results of 3D reconstruction for day 6, 10, 14, 18 of the growth of corn roots The
results by the proposed method are detailed enough for phenotyping analysis

(a) (b) (c)

(d) (e) (f)

Figure 5. (a, b, c, d,e, f ) are the results of 3D reconstruction with 12, 24, 36, 48, 60, 72 number of images
respectively, from the turntable sequence. The images are from the day 14 growth stage of the corn plant.

to decrease, this is observation is similar to that of plot 6 (b), where the volume of the RSA decreases with
increase in the number of images for 3D reconstruction.

Figure 6 shows the plot of RSA volume as a function of measurement day 6(a) and as a function of number
of images used in 3D reconstruction 6(b). The root growth is almost linear with time as the plant is its early
stage of growth. However, the RSA volume as a function of the number of images goes down with increase in
the number of images for 3D reconstruction. This phenomena can be explained by the fact that as we increase
the number of images the carving by visual hull method becomes more precise and more erroneous voxels are
removed with increase in the number of images. When more images are used for 3D reconstruction then the
3D model becomes more accurate to the RSA however the time for processing increases.

7 CONCLUSIONS

In this paper we have presented a complete system for 3D reconstruction and modelling of roots grown in
transparent gellan gum medium. Although not a natural environment for growing plants, never the less it
represents a useful strategy for phenotyping roots and studying the 3D structure using relatively in-expensive
techniques. Visual sensors (digital) cameras are much cheaper to procure, operate, and maintain than 3D CT
X-ray scanners, MRI, or even Lidar. We have demonstrated the successful working of the proposed method
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(a) (b)

Figure 6. (a) is a plot of corn roots 3D volume as a function of the day of measurement. This plot is very close
to being linear as the plant is in its early stage of growth. (b) is a plot of root volume as a function of number of
images used in 3D reconstruction of the root. The measured volume of RSA decreases with increasing number
of images, however the difference in volume/biomass at different days of growth is consistent.

on corn roots. Detailed reconstruction of the roots where obtained with 72 images. The root growth rate is
observed to be almost linear with time, which is well in line with current theories for plants in biology that is
a plant in its early stage of growth has almost a linear growth rate. Increasing the number of images for 3D
reconstruction improves the accuracy of 3D model although it decreases the observed volume. This empirical
finding is consistent with the theory of space carving which states that the volume of reconstruction decreases
monotonically with increasing number of images from different view points. In our future experiments we
will also consider the effect of changing viewing angles. We will also report on the issues due to refraction of
light through gellan gum and its impact on 3D reconstruction. The root shape can be analysed using statistical
shape analysis techniques like Kurtek et al. (2013).
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