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Abstract: This work is based on the framework proposed by Conrad (1997) to determine the optimal timing
of an investment or policy to slow global warming. While Conrad formulated the problem as a stopping rule
option pricing model, we treat the policy decision by considering the total damage function that enables us to
make some interesting extensions to the original formulation. We show that Conrad’s framework is equivalent
to minmization of the expected value of the damage function under the stochastic optimal stopping rule. We
extend Conrad’s model by allowing for policy cost to grow with time. In addition to closed form solution,
we also perform Monte Carlo simulations to find the distribution for the total damage and show that at higher
quantiles the damage may become too large and so is the risk on the global economy. We also show that the
decision to take action largely depends on the cost of the action. For example, in the case of model parameters
calibrated as in Conrad (1997) with a constant cost, there is a rather long wait before the action is expected to
be taken, but if the cost increases with the same rate as the global economy growth, then action has to be taken
immediately to minimize the damage.
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1 INTRODUCTION

Over the last few decades, scientists have studied extensively the effect of global warming and optimal strate-
gies to slow down the process to manage disaster risks. For example, see Nordhaus (1991), Nordhaus (1992),
Nordhaus and Boyer (2000), Association of American Geographyers (2003), UNFCCC (2006), Nordhaus
(2008), Greiner et al. (2010), Field et al. (2012). Some of these models establish the close linkage between
global economy growth and the damage by global warming and support the view that policy actions against
global warming are urgently needed.

In this paper, we study the global warming model of Conrad (1997) and suggest optimal timing for the policy
by considering the total damage function. The global temperature is assumed to be drifting upward following
a Brownian motion. Investments to slow the global warming are called “bullets” and they are characterized
by the reduction of both the drift rate and the standard deviation after the investments. If the action is taken at
time t = τ which reduces the drift from µ1 to µ2 and the volatility from ξ1 to ξ2, the temperature process is
assumed to be

dCt = µ(t)dt+ ξ(t)dz, µ(t) = µ1It<τ + µ2It≥τ , ξ(t) = ξ1It<τ + ξ2It≥τ , (1)

where Ct is the mean global temperature at time t, µ(t) is the drift, ξ(t) is the volatility, dz is the increment of
the standard Wiener process and I{.} is the indicator symbol that equals 1 if the condition in {.} is true and 0
otherwise. The damage rate from global warming is assumed to be the convex function

St = S0e
γ(Ct−C0), (2)

where St is the damage rate in billions of dollars per annum, γ is a positive parameter, C0 is the reference
temperature and S0 is the corresponding damage rate. The original model was calibrated using time series
data for temperature anomalies and estimates of the damage from the global warming and the cost of the
investments. In this study we extend Conrad’s model by allowing for policy cost to grow with time. In
addition to closed form solution for the optimal timing of the policy, we also perform Monte Carlo simulations
to find the distribution for the possible total damage.

2 STOPPING-RULE MODEL AND SOLUTION

Applying Ito’s Lemma to function (2) with process (1), one can show that the damage rate St from global
warming follows the geometric Brownian motion with dirft α(t) and volatility σ(t)

dSt = α(t)Stdt+ σ(t)Stdz, α(t) = α1It<τ + α2It≥τ , σ(t) = σ1It<τ + σ2It≥τ , (3)

where α1 = µ1γ + (ξ1γ)
2/2 and σ1 = ξ1γ are the drift and volatility before the policy is introduced,

α2 = µ2γ+(ξ2γ)
2/2 < α1 and σ2 = ξ2γ < σ1 are the drift and volatility after the policy, dz is the increment

of a standard Wiener proces. We assume that the cost of the policy changes in time as Kt = K exp(q × t)
and it is paid only once when the policy is introduced at time t = τ . It is important to note that Conrad (1997)
assumes that the cost of policy is time independent. It is further assumed that the global economy grows at a
rate r > α1.

From (3) it follows that the damage rate is log-normally distributed, thus the expected value of the damage
at future time T , given damage rate St at time t, is Et[ST ] = St exp(

∫ T

t
α(x)dx). Hereafter, notation Et[·]

denotes expectation conditional on information available at time t. Thus the present value at time t of the
future total expected damage if the policy is never introduced can be easily calculated as

d1(St) = Et

[∫ ∞

t

St′e
−r(t′−t)dt′

]
= St

∫ ∞

t

eα1(t
′−t)e−r(t′−t)dt′ =

St

(r − α1)
. (4)

Similarly, if the policy is introduced at time t, the total discounted expected future damage plus the policy cost
is given by

d2(St) = Et

[∫ ∞

t

St′e
−r(t′−t)dt′

]
+Kt =

St

(r − α2)
+Kt. (5)

Consider the actual total damage function represented by random variable

D(t, τ) =

∫ τ

t

Sxe
−r(x−t)dx+

∫ ∞

τ

Sxe
−r(x−t)dx+Kτe

−r(τ−t). (6)
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Here, τ is stochastic stopping time, i.e. different realizations will have different τ . The expected total damage
under the stopping rule τ for damage rate S at time t is

V (S, t) = Et [D(t, τ)] . (7)

Typically, one defines an optimal stopping rule τ∗ as the one that minimizes expected value of D(t, τ), i.e. the
expected total damage under the optimal stopping rule is

V ∗(S, t) = min
τ

Et [D(t, τ)] = Et [D(t, τ∗)] . (8)

We can solve this problem by formulating partial differential equation (PDE) for V (S, t); for detailed discus-
sion of PDE approach for valuation of projects and investment rules, see Dixit and Pindyck (1994).

It is interesting to consider the deterministic case when the volatility σ1 = σ2 = 0 in (3). In this case
St = S0e

α1t when t < τ and St = S0e
α1τ+α2(t−τ) when t ≥ τ . Minimizing the deterministic function

D(t, τ) with respect to τ we obtain the optimal time τ∗ and the corresponding critical damage rate S∗

τ∗ =
1

α1 − q
ln

(
K(r − q)(α2 − r)

S0(α2 − α1)

)
, S∗ = S0

(
K(r − q)(α2 − r)

S0(α2 − α1)

) α1
α1−q

, (9)

if q < α1. If the process is stochastic instead of deterministic, there is some value in waiting somewhat longer
than the deterministic case, as will be shown later with an actual example.

Now for the stochastic process consider the region where the policy is not introduced, i.e. the transition density
function f(S′, t′|S, t) for the damage rate stochastic process (3) satisfies the backward Kolmogorov equation

∂f(S′, t′|S, t)
∂t

+ α1S
∂f(S′, t′|S, t)

∂S
+

1

2
σ2
1S

2 ∂
2f(S′, t′|S, t)

∂S2
= 0; (10)

for transition densities and Kolmogorov equations corresponding to Wiener processes, see Cox and Miller
(1965). Multiplying each term by S′e−r(t′−t), integrating from t to ∞ and taking expectation yields

∂V (S, t)

∂t
+ α1S

∂V (S, t)

∂S
+

1

2
σ2
1S

2 ∂
2V (S, t)

∂S2
− rV (S, t) + S = 0, (11)

subject to the condition V (S, t) ≤ d2(S) + Kt, where the equality applies on the boundary S = Ht when
policy is introduced.

Note that the terms rV and S appear because we move e−r(t′−t) and integration
∫∞
t

under the derivative
∂f/∂t. Also note that we do not start the policy if V (S, t) < d2(S(t)) and introduce the policy otherwise.

The policy cost is time dependent Kt = K exp(q × t), thus the problem is time non-homogenous. Assume
that the policy is introduced when damage rate St breaches the level Ht = H exp(q × t). To reduce the
problem to time homogeneous and solve PDE, consider a new variable Y = S exp(−q × t). The PDE for
Q(Y, t) ≡ V (S, t) will be the same as (11) except the change of α1 to α1 − q. Substituting solution in the
form Q(Y, t) = Q̃(Y ) exp(q × t) leads to ODE for Q̃(Y )

(α1 − q)Y
dQ̃(Y )

dY
+

σ2
1

2
Y 2 d

2Q̃(Y )

dY 2
− (r − q)Q̃(Y ) + Y = 0, (12)

subject to the condition Q̃(Y ) ≤ Y
(r−α2)

+K, where the equality applies to the boundary at Y = H . Equation
(12) is a non-homogeneous, second-order differential equation. The homogeneous part has the well-known
solution Q̃(Y ) = ξY ϵ̃ + ηY ϵ, where ϵ̃ and ϵ are given by

ϵ̃ = (1/2− (α1 − q)/σ2
1)−

√
(1/2− (α1 − q)/σ2

1)
2 + 2(r − q)/σ2

1 ; (13)

ϵ = (1/2− (α1 − q)/σ2
1) +

√
(1/2− (α1 − q)/σ2

1)
2 + 2(r − q)/σ2

1 , (14)

and constants ξ, η can be found from the boundary conditions. One of the boundary conditions is Q̃(0) = 0.
It can be shown that if q < r then ϵ̃ < 0. Thus the conditions Q̃(0) = 0 and ϵ̃ < 0 lead to ξ = 0 and solution
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simplifies to Q̃(Y ) = ηY ϵ. On the other hand, if q ≥ r, ϵ̃ ≥ 0, both terms ξY ϵ̃ and ηY ϵ are retained in the
solution. Here we only consider the solution for q < r.

A particular solution to equation (12) is simply Y/(r − α1). Thus a general solution is obtained by adding the
solution of the homogenuous portion to the particular solution yielding

Q̃(Y ) = ηY ϵ +
Y

(r − α1)
. (15)

The continuity conditions for the function on the boundary Y = H , i.e. Q̃(Y ) = Y
(r−α2)

+K, gives

ηHϵ +
H

(r − α1)
=

H

(r − α2)
+K, (16)

that allows to identify constant η

η =
1

Hϵ−1

(α2 − α1)

(r − α1)(r − α2)
+

K

Hϵ
. (17)

Thus the solution for total damage is V (S, t) = Q̃(Se−qt)eqt, where

Q̃(Y ) = ηY ϵ +
Y

(r − α1)
=

(
K

Hϵ
− 1

Hϵ−1

(α1 − α2)

(r − α1)(r − α2)

)
Y ϵ +

Y

(r − α1)

=

(
Y

H

)ϵ (
K −H

α1 − α2

(r − α1)(r − α2)

)
+

Y

(r − α1)
. (18)

Considering V (S, t) as a function of boundary level H , we can find optimal level H∗, where V (S, t) is
minimized with respect to H by solving

∂Q̃(Y )

∂H
= Y ϵ

(
−ϵ

K

Hϵ+1
+

ϵ− 1

Hϵ

α1 − α2

(r − α1)(r − α2)

)
= 0, (19)

that gives

H∗ =
ϵ(r − α1)(r − α2)K

(ϵ− 1)(α1 − α2)
. (20)

We could obtain the same result if we would solve PDE (11) for optimal V ∗(S, t) directly; in that case we
just had to impose continuity condition not just for the function but also for its 1st derivative on the stopping
boundary; for discussion about these boundary conditions, see Dixit and Pindyck (1994, pp. 130-132).

The corresponding optimal critical damage rate is S∗ = eqtH∗. The probability density of the hitting time τ
for process Yt to breach level H (i.e. St to breach Ht) is given by

g(τ) =
ln(H/S0)

σ1τ
√
2πτ

exp

{
− [ln(H/S0)− ητ ]2

2σ2
1τ

}
, η = α1 − q − σ2

1/2 > 0, for H > Y0 = S0. (21)

The above density is only valid if η > 0. From (21) we find the expected hitting time is

E[τ ] =
ln(H/S0)

η
. (22)

In the case of time independent cost (i.e. q = 0), the expected critical time (to breach the optimal critical
level S∗) from the above equation reduces to (C∗ − C0)/µ1, where C∗ = C0 + ln(S∗/S0)/γ is the critical
temperature corresponding to S∗. The solution obtained here for q = 0 is equivalent to the solution in Conrad
(1997). Finally, the solution to the stochastic problem also contains the deterministic case given in (9): by
letting σ1 = σ2 → 0, we find ϵ → (r − q)/(α1 − q) and the solution for τ∗ and S∗ is identical to (9).
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Figure 1. Probability density function (pdf) for the total damage. H = 1 is for taking action immediately,
H = H∗ is for optimal strategy and “No action” corresponds to never taking any action (business as usual).

3 NUMERICAL RESULTS

Here we analyse the distribution of total damage D(t, τ) given by (6) under the optimal and non optimal
stopping rules. Monte Carlo simulation of D(t, τ) is simple: one has to simulate damage rate process S(t)
given by (3) with drift α1 until time τ where S(t) breaches the critical level H exp(q × t) and with drift α2

afterwards, and calculate D(t, τ) in (6). Repeating simulation many times allows us to find a distribution of
D(t, τ).

The parameter values of r = 0.05, α1 = 0.03708657, α2 = 0.02758027, σ1 = σ2 = 0.19012608 are
taken from Conrad (1997). For the base solution, we assume a constant cost, i.e. q = 0.0, that corresponds
to Conrad’s work. The case of constant cost assumes the future value of the cost remains the same, which
effectively make the present value of the cost getting cheaper at the same rate as the economy growth rate, a
somewhat unrealistic assumption.

Typically, the solution to the stopping rule problem, or equivalently to the American option pricing problem,
is in terms of expected value of payoff function. In the context of financial options, this expectation gives a
fair value at which there are buyers and sellers willing to do the transaction, knowing that the associated risks
can be fully hedged. If these kind of buying and selling are repeated many times, on average these transactions
will give the buyers or sellers a fair return adjusted to the risks they take. However, to the question of when to
take action to slow down global climate change, the answer based on average damage (expected value) is too
risky and almost does not make sense. There is only one realization of reality and one chance for us to do it
right. The risk to human being’s survival is too great for us to rely on an average solution to manage the risk.

Indeed, the solution based on the expectations gives τ∗ = 122 years as the expected optimal time to take action,
a seemingly very long time. The optimal critical damage rate S∗ = USD 10.19 billion per annum at which
the action should be taken to minimize the expected total damage. The corresponding critical temperature
is C∗ = 16.22 degrees, assuming today’s temperature is C0 = 15 degrees. Using 100,000 Monte Carlo
simulations, the expected total damage from this optimal strategy is about USD 61.6 billion with a numerical
standard error of 0.83 billion due to finite number of simulations.

In comparison with the the above solution for the stochastic case, the corresponding solution for the determin-
istic case in (9) gives τ∗ = 53 years and S∗ = USD 7.08 billion per annum, both are much smaller than the
stochastic counterparts, demonstrating the value in waiting under uncertainty.

Instead of considering the expectations, a more sensible approach is by considering the entire distribution
of the total damage. The Monte Carlo simulation allows us to obtain such a distribution. The pdf of total
damage for the case of constant cost is shown in Figure 1. Given the distribution, higher quantiles can be
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Figure 2. Damage curves for different cost increasing rate q. The curve for q = 0.05 is from Monte Carlo
simulation, and all others are analytical solutions.

Table 1. Quantiles of total damage (billion USD)

Cases Mean Median 0.9 quantile
No action 75.8 39.8 140.2

Immediate action 104.2 89.1 143.7
Optimal strategy 61.6 39.3 121.5

considered for decision making with regard to managing risks, similar to the concept of Value at Risk used
in managing financial risks. If the optimal critical total damage level of USD 61.6 billion is just acceptable
to the global environment and economy, there is about 30% chance this total damage will be exceeded and
disastrous consequences may result. The 90% quantile of the total damage is USD 121.5 billion, twice as large
as the expected value. In other words, there is 10% chance the total damage could reach twice as high as the
acceptable level, which may be a disastrous outcome if this strategy is taken.

To see the impact on non-optimal stopping rule, we find distributions of D(t, τ) when stopping rule corre-
sponds to different breaching levels H = ωS∗ with ω ranging around 1. For example, at H = 2.0, the
expected total damage obtained from Monte Carlo simulation is about 74. The corresponding critical temper-
ature at which the action is taken is now 15.36 degrees, and the corresponding expected waiting time is 36
years. Comparing with the optimal strategy, this much earlier action at a much lower critical level of damage
rate causes more total damage! At H = 1.0, i.e. if we bite the bullet now without any waiting, the expected
total damage obtained from Monte Carlo simulation is 104.2 (the exact value is 104.6), which is even larger
than the damage of waiting for 36 years with H = 2.0. Such is the paradox of the current model with these
specific inputs. Finally, if no action is taken (the bullet is never bit), the expected total damage is 77.4 which is
even better than taking action immediately. This is because the reduction in the damage rate due to immediate
action is not large enough to justify the cost. The pdf curves of damage for the cases of no action and imme-
diate action are also shown in Figure 1. The corresponding quantiles from Monte Carlo simulations for these
three distributions are shown in Table 1.

In general, under the above inputs, any earlier (later) action or equivalently action at a lower (higher) threshold
of the damage rate will be worse off than the optimal strategy. Intuitively, this does not seem to be expected:
an earlier action does not reduce the total damage of global warming. This paradox can be explained by
comparing the cost with the accumulated damage. The assumption of constant future cost means the present
value of the cost decreases exponentially with time at the discount rate, and if this decrease is faster than the
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increase in the total damage in absolute terms, it is worthwhile to wait for some time before taking the action
when the cost is much cheaper.

In the scenarios considered above, even the optimal strategy may not be good enough because of the high risk
of too large a damage to the global economy. Assuming the process and especially the damage are correctly
modeled, the only way out for confidently saving the global economy is to take more drastic measures to
reduce the damage rate more aggressively with reduced cost. This means much reduced drift rate α2 after the
bullet is bit, and at the same time keep the cost Kt sufficiently low to enable effective and confident reduction
of the total damage under the optimal strategy. This can be achieved through scientific research and technology
breakthroughs.

The above paradox of earlier action being worse off than waiting disappears when we consider a more realistic
scenario for the cost. Assuming the future cost increases with the discount rate, i.e. q = r, we then obtain
a qualitatively different results. In this case, Monte Carlo simulation shows that the total damage becomes a
monotonically increasing function of the breaching level. That is, the higher the critical value we take as the
trigger of action, the larger the total damage will be. There is no optimal level in any delayed actions. The
longer we wait, the larger will be the total damage. In this scenario the best approach is to take the action
immediately.

For other cost increment rates 0 < q < r, the damage monotonically and continuously increases with the
value of q. Figure 2 shows the damage curves corresponding to different values of q. For q < r there is a
minimum corresponding to the optimal policy. As the cost increasing rate q approaches the economic growth
rate r = 0.05 from below, the damage curve converges to an asymptotic line. At q ≥ r the solution jumps to
a different branch with optimal solution corresponding to an immediate action. This jump is easily confirmed
by Monte Carlo simulation, see Fig. 2.

4 CONCLUSIONS

Finding optimal stopping rule via PDE approach is a very powerful method. In this paper the solution is found
in closed form for 0 < q < r. Qualitatively, the optimal time to bite the bullet depends on, among other
factors, the relative rates of economic growth and cost increment. For more realistic stochastic process for the
damage rate and policy time dependence different from exponential, PDE can be solved numerically which is
a subject of our future research.

REFERENCES

Association of American Geographyers (2003). Global change and local places: estimating, understanding,
and reducing greehouse gases. Cambridge, UK: Cambridge University Press.

Conrad, J. M. (1997). Global warming: When to bite the bullet. Land Economics 2, 164–173.

Cox, D. R. and H. D. Miller (1965). The Theory of Stochastic Processes. London: Methuen.

Dixit, A. and R. Pindyck (1994). Investment under uncertainty. Princeton, NJ: Princeton University Press.

Field, C. B., V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandreac, K. J. Mach,
G. K. Plattner, S. K. Allen, M. Tignor, and P. M. M. (eds) (2012). Managing the Risks of Extreme Events
and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

Greiner, A., L. Grune, and W. Semmler (2010). Growth and climate change: threshold and multiple equilibria.
Dynamic Modeling and Econometrics in Economics and Finance 12, 63–78.

Nordhaus, W. D. (1991). To slow or not to slow: the economics of the greenhouse effect. The Economic
Journal 101, 920–937.

Nordhaus, W. D. (1992). An optimal transition path for controlling greenhouse gases. Science 258, 1315–1319.

Nordhaus, W. D. (2008). The question of balance. Hew Haven: Yale University Press.

Nordhaus, W. D. and J. Boyer (2000). Warming the world. Economic models of global warming. Cambridge:
MIT Press.

UNFCCC (2006). Technologies for adaptation to climate change. Adaptation, Technology and Science Pro-
gramme of United Nations Framework Convention on Climate Change Secretariat, Bonn, Germany, 40.

1453




