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Abstract: The Box-Cox (1964) transformation model (hereafter called the BC model) is widely used in 
various fields of econometrics and statistics. However, since the error terms cannot be normal except in cases 
in which the transformation parameter is zero, the likelihood function under the normality assumption 
(hereafter the BC likelihood function) is misspecified and the maximum likelihood estimator (hereafter the 
BC MLE) cannot be consistent. Alternative distributions of the error terms and transformations for the BC 
model have been proposed by various authors. However, these alternative estimators are not inconsistent if 
the distributions of the error terms are misspecified. Foster, Tain, and Wei (2001) and Nawata and 
Kawabuchi (2013) proposed semiparametric estimators. However, their estimators are not consistent under 
heteroscedasticity. 

Powell (1996) proposed a semiparametric estimator based on the moment restriction. Although Powell’s 
estimator is consistent under heteroscedasticity, the problems of the estimator are: (i) to identify the 
transformation parameter, λ , we need to introduce one or more instrumental variables, tw  , which satisfy 

0)( =⋅ tt uwE   and are not included in ,tx   and the result of the estimation changes depending on the 

selection of instrumental variables, (ii) as pointed out by Khazzoom (1989), when all observations are 1<ty  , 

the objective function is always minimized at ∞=λ  (or at −∞=λ   if  1>ty  for all observations), so that a 

rather arbitrary rescaling of  ty  is necessary, and (iii) its finite-sample properties are not good and it often 

performs poorly, as shown in the Monte Carlo experiments. 

Here I propose a new robust estimator of the power transformation model (the Box-Cox transformation 
model excluding the cases in which the transformation parameter is zero) given by 

ttt uxz += β' , ,λ
tt yz =  ,0≥ty  .,...,2,1 Tt =  

The estimator is based on only the first- and third-moment restrictions of the error terms and does not require 
the assumption of a specific distribution. The estimator is a root of the equations;  

3)( βt
t

t xz −  ,0=   and   .0)'( =− βtt
t

t xzx   

The estimator is consistent if the first- and third-moments of the error terms are zero; that is, it is consistent   
even under heteroscedasticity. Moreover, it can be easily calculated by the least-squares and scanning 
methods. The results of the Monte Carlo experiments show the superiority of the proposed estimator over the 
BC MLE and Powell’s estimator. 

 

Keywords: Box-Cox transformation, power transformation, heteroscedasticity, robust estimator, moment 
restriction 

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013 
www.mssanz.org.au/modsim2013

1284



Nawata, Robust estimation based on the first- and third-moment restrictions of the power transformation 
model  

1. INTRODUCTION 

The Box-Cox (1964) transformation model (hereafter called BC model) is widely used in various fields of 
econometrics and statistics. However, since the error terms cannot be normal except in cases in which the 
transformation parameter is zero, the likelihood function under the normality assumption (hereafter the BC 
likelihood function) is misspecified and the maximum likelihood estimator (hereafter the BC MLE) cannot be 
consistent. Alternative distributions of the error terms and transformations for the BC model have been 
proposed by various authors.  However, these alternative estimators are not inconsistent if the distributions of 
the error terms are misspecified. Foster, Tain, and Wei (2001) and Nawata and Kawabuchi (2013) proposed 
semiparametric estimators. However, these alternative estimators are not consistent under heteroscedasticity.  

Powell (1996) proposed a semiparametric estimator based on the moment restriction. Although Powell’s 
estimator is consistent under heteroscedasticity, the problems of the estimator are: (i) to identify  the 
transformation parameter, λ , we need to introduce one or more instrumental variables, tw  , which satisfy 

0)( =⋅ tt uwE   and are not included in ,tx   and the result of the estimation changes depending on the 
selection of instrumental variables, (ii) as pointed out by Khazzoom (1989), when all observations are 1<ty  , 
the objective function is always minimized at ∞=λ  (or at −∞=λ   if  1>ty  for all observations), so that a 
rather arbitrary rescaling of  ty  is necessary, and (iii) its finite-sample properties are not good and it often 
performs poorly as shown in the Monte Carlo experiments.  

Here I propose a new robust estimator of the power transformation model: the Box-Cox transformation 
model excluding the cases in which the transformation parameter is zero. The estimator is based on only the 
first- and third-moment restrictions of the error terms and does not require the assumption of a specific 
distribution. The estimator is consistent even under heteroscedasticity. Its asymptotic distribution is obtained, 
and the results of Monte Carlo experiments are also presented 

  

2. MODEL 

  We consider the simple power transformation model 

ttt uxz += β' , ,λ
tt yz =  ,0≥ty  ,,...,2,1 Tt =     (1) 

where tx  and β
 
are k-th dimensional vectors of explanatory variables and the coefficients, respectively, and 

λ
 
is the transformation parameter. Let ttt vxy +=− ** '/)1( βλλ  and λ/tt uv = , in which case we obtain the 

BC model. However, to ensure the asymptotic distribution of the estimator, we only considered the 0≠λ  
case and did not consider the 0=λ  case. Therefore, we call this model a power transformation model rather 
than a BC model.  }{ tx  and }{ tu   do not have to be independent and identically distributed (i.i.d.) random 

variables, and heteroscedasticity can be assumed. The following assumptions are made:  

Assumption 1. )},{( tt ux  are independent but not necessary identically distributed. The distribution of tu  
may depend on tx . 

Assumption 2. tu  follows distributions whereby the supports are bounded from below (i.e., 0)( =uft  if 
au −≤  for some 0>a

 
where )(uft  is the probability (density) function.) For any t, the following moment 

conditions are satisfied: (i) ,0)|( =tt xuE
 
(ii) ,0)|( 3 =tt xuE

 
and (iii) 2

6
1 )|( δδ << tt xuE

 
for some 

∞<<< 210 δδ . 

Assumption 3. }{ tx  are independent and its fourth moments are finite. The distributions of }{ tx and the 
parameter space of β

 
are restricted so that axt >)'inf( 0β  and cxt >)'inf( β

 
for some 0>c  in the 

neighborhood of 0β  where 0β  is the true parameter value of  β . 

Here, instead of the BC likelihood function, we use the third-moment restriction and the roots of the 
equations; 

  3)()( βθ t
t

tT xzG −=   ,0)( =≡ θ
t

tg   and  ,0)'( =− βtt
t

t xzx   (2) 

where ),(' βλθ = , are considered. Note that the second equation of (2) gives the least-squares estimator when 

the value of λ
 

is given. Let ),(' 000 βλθ =  be the true parameter value of θ . Since 0)]([ 0 =θGE , we obtain 

the following proposition:  
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Proposition 1 

Among the roots of (2), there exists a consistent root. 

 

Let )'ˆ,ˆ('ˆ βλθ =  be the consistent root. The asymptotic distribution of θ̂
 
is obtained by the following 

proposition. 

 

Proposition 2 

Let )'()( βθξ tttt xzx −=
 
and ].)'(),([)'( θξθθ ttt g=

 
Suppose that 

0
|

'

)(1
θθ

θ
∂

∂
 t

tT


 converges to a 

nonsingular matrix A in probability and that ])'()([
1

0 ott
t

E
T

θθ  converges to a nonsingular matrix B. Then 

the asymptotic distribution of θ̂
 
is given by 

],)'(,0[)ˆ( 11
0

−−→− ABANT θθ
       (3) 

where ,|
'

)(
lim

0 ∂
∂=

∞→ t

t

T
pA θθ

θ

 

and

 

].)'()([
1

lim 0 ott
tT

E
T

B θθ 
∞→

=   

[Proof] 

Let 

 
.)(

)(
)()(   











==

t
t

t

T

t

G

θξ
θ

θθ 
       (4) 

Then
  

),(
1

]|
'

1
[)ˆ( 0

1
0 * θ

θ
θθ

θ




TT
T −

∂
∂−=−       (5)

  

where *θ is some value between θ̂
 
and 0θ . Here, 

.
1

)(
2
0

3

0



















= tt

t

t ux

u

σ
θ          (6)

 
 

Therefore, .0)]([ 0 =θtE 
 
Since the variables )}({ 0θt are independent and the Lindberg condition is satisfied 

under Assumptions 2 and 3, we obtain  

),,0()(
1

0 BN
T

→θ          (7)  

from Theorem 3.1.6 in Amemiya (1985, p. 92).  

Since 














−

−−−
=∂∂


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t
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t
ttt

t
ttttttt

t

xxyxz

xxzyzxz

')log('

)'(3)log()'(3
/

22

β

ββ
θ  ,  

,|
'

)(1
* A

T
P⎯→⎯

∂
∂

θθ
θ

         (8)  

from Theorem 4.1.4 in Amemiya (1985, pp.112-113). From Theorem 4.1.3 in Amemiya (1985, p.111), the 

asymptotic distribution of θ̂
 
is given by Equation (3).  
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3. MONTE CARLO STUDY  

In this section some Monte Carlo results are presented for the BC MLE, the newly proposed estimator, and 
Powell’s estimator. The behaviors of the estimators under both homoscedasticity and heteroscedasticity are 
studied. The basic model is  

ttt uxz ++= 21 ββ , ,0λ
tt yz =

  
,0≥ty
  

.,...,2,1 Tt =     (9) 

Note that when λ  is given, 1β  and 2β  are obtained by the least-squares method. The BC MLE and the 
proposed estimator are calculated by the following scanning method (Nawata 1994; Nawata and Nagase 
1996). 

i) Choose nλλλλ <<<< ...321  from 0.01 to 2.0 with an interval of 0.01. 

ii) Calculate )(1̂ λβ
 

and )(ˆ
2 λβ  for each λ

 

by the least-squares method. 

iii) For BC MLE, choose 
1

ˆ
BCλ , which maximizes the BC likelihood function. For the proposed 

estimator, choose ,ˆ
1Nλ which satisfies 0)()( 1 <⋅ +iTiT GG θθ  where )).(ˆ),(ˆ,(' 21 iiii λβλβλθ =   

iv) Choose iλ
 

in the neighborhood of 
1

ˆ
BCλ and 

1

ˆ
Nλ

 

with an interval of 0.0001, and repeat steps (ii) and 

(iii).  
v) Determine the final estimator. 
For the proposed estimator, there are two possible problems. They are: i) Equation (2) has multiple solutions, 
and Equation (2) does not have a solution. However, all trials have just one solution and the above problems 
do not occur in the Monte Carlo study. 

Since Powell (1996) suggested a function of tx  as the instrument variable tw ,  we use 2
tt xw =  and consider 

the moment restrictions, 0)( =ttuxE  and 0)( 2 =tt uxE . Since heteroscedasticity is also considered, the 
generalized method of moment (GMM) type estimator is not used and Powell’s estimator is obtained by 
minimizing. 

.)}({})({ 2
10

22
10 tt

t
t

t
ttt xzxxzxS ββββ −−+−−=      (10) 

Powell’s estimator is also calculated by the scanning method over ]0.2,0[∈λ . As the proposed estimator, 
there are two possible problems for Powell’s estimator. They are: (i) S  is not minimized in )0.2,01.0(∈λ  
and S  is minimized on the boundary (i.e., 01.0=λ  or )0.2=λ , and  (ii) S  becomes 0 by multiple values of 

.θ   Unlike the proposed estimator, these problems happen in many trials.  Since we cannot get accurate 
values of the estimator in these trials, the results of Powell’s estimator are calculated for trials without these 
problems.  

3.1. Under homoscedasticity 

In this section, the behavior of the estimators under homoscedasticity is analyzed. }{ tx  are i.i.d. random 
variables

 

distributed uniformly on (0, 10). }{ tu  are i.i.d. random variables distributed uniformly on (-5, 5). 
The true parameter values are 0λ  = 0.4, 0.51 =β  and .1.02 =β  Values of 50, 100 and 200 are considered for 
the sample size T.  The number of trials was 1,000 for all cases.  

 The results are presented in Table 1. Note that the following notation is used in the tables: STD, standard 
deviation; Ql, first quartile; and Q3, third quartile.  For Powell’s estimator, the following notation is also 
used: N1, number of trials where S  is minimized at 01.0=λ ; N2, number of trials where S  is minimized at 

0.2=λ ; and N3, number of trials where 0=S  becomes 0 at multiple values of θ . The BC MLE 
underestimates λ  and has a fairly large bias for all cases. Although the standard deviations of the proposed 
estimator are about 1.7 times larger than those of the BC MLE, the biases of the proposed estimator are much 
smaller. The bias almost disappears, even when T = 50. In terms of the mean squared error (MSE), the 
proposed estimator is better than the BC MLE if 100≥T . (When T= 50, the MSEs of the two estimators are 
similar values.) The BC MLE also underestimates 1β  and 2β . Although the standard deviations of the 
proposed estimator for 1β  and 2β  are about 1.5 and 2.0 times larger than those of the BC MLE, they are 
mainly caused by the scaling effect of the transformation. Since the BC MLE underestimates ,λ  the 
equation λ

tt yz =
 

holds and its variation become smaller than the true value. This effect makes the standard 
deviations smaller. Therefore, the smaller standard deviation does not directly indicate the superiority of the 
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estimators for 1β  and 2β . Powell’s estimator performs poorly. In many trials, we cannot get accurate values 
of the estimator because of the problems mentioned earlier. Moreover, although the biases are smaller than 
those of the BC MLE, the standard deviations are much larger than those of the newly proposed estimator 
even for trials without the problems. 

3.2. Under heteroscedasticity  

In this section, the effect of heteroscedasticity is analyzed. The values of tx  are chosen in the same way as in 
the previous section. The true parameter values are 0λ  = 0.4, 5.21 =β  and .25.02 =β  The error terms are 
given by  

ttt xu ε×+= )10/1(          (12) 
 

where }{ tε  represent i.i.d. random variables distributed uniformly on (-2.5, 2.5). As before, Values of 50, 
100 and  200 are considered for the sample size T., are considered in the Monte Carlo study. The results are 
presented in Tables 2.  

The BC MLE underestimates λ  and the biases of the BC MLE are larger than those under homoscedasticity 
for all cases. This coincides with a previous report (Showalter, 1994) in which large biases of the BC MLE 
under heteroscedasticity were described. The standard deviations of the proposed estimator are about 2.5 
times larger than those of the BC MLE. However, the biases of the proposed estimator are much smaller than 
those of the BC MLE. As a result, in terms of the MSE, the proposed estimator is better than the BC MLE in 
all cases. As before, Powell’s estimator performs poorly. In many trials, we cannot get accurate values of the 
estimator. The standard deviations are much larger than those of the newly proposed estimator even for the 
trials without the problems.   

 

4. CONCLUSION  

Although the BC model is widely used in various fields, the BC MLE is not consistent. In this paper, a new 
robust estimator of the power transformation model is proposed. The estimator is based on the first- and 
third-moment restrictions of the error terms. The estimator is consistent even under heteroscedasticity and its 
asymptotic distribution is also obtained. Moreover, the estimator is easily calculated by the least-squares and 
scanning methods. The results of the Monte Carlo experiments show the superiority of the proposed 
estimator over the BC MLE and Powell’s estimator. However, the performance of the estimators may depend 
on the model; the findings may differ in other models. Further investigation is thus necessary to determine 
the conditions under which the proposed estimator shows superiority 
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Table 1. BC MLE, proposed estimator, and Powell’s estimator under homoscedasticity ( 0λ =0.4)  

    Mean STD Q1 Median Q3 

BC MLE 

T = 50 λ  0.2956 0.0689 0.2490 0.2916 0.3397 

1β  3.4299 1.4403 2.4383 3.0770 4.0417 

2β  0.0534 0.0868 0.0021 0.0464 0.0935 

T = 100 λ  0.2971 0.0457 0.2660 0.2956 0.3269 

1β  3.2930 0.8513 2.6735 3.1507 3.7539 

2β  0.0518 0.0568 0.0174 0.0485 0.0836 

T = 200 λ  0.2962 0.0325 0.2741 0.2960 0.3162 

1β  3.2358 0.5995 2.8214 3.1439 3.5691 

2β  0.0500 0.0377 0.0261 0.0478 0.0728 

Proposed Estimator     

T = 50 λ  0.4105 0.1200 0.3267 0.3985 0.4863 

1β  6.7042 6.1429 3.3644 4.9468 7.6518 

2β  0.1375 0.3435 0.0035 0.0871 0.2059 

T = 100 λ  0.4071 0.0776 0.3562 0.3994 0.4540 

1β  5.6734 2.6783 3.9680 5.0203 6.6415 

2β  0.1164 0.1599 0.0304 0.0899 0.1814 

T = 200 λ  0.4040 0.0556 0.3663 0.4008 0.4379 

1β  5.3683 1.7211 4.1652 5.0267 6.1420 

2β  0.1045 0.0906 0.0488 0.0939 0.1520 

Powell's Estimator 

T = 50 λ  0.5050 0.3834 0.1754 0.3985 0.8302 

1β  89.0886 889.8028 1.8422 4.8711 33.6328 

2β  1.1844 3.7146 0.0013 0.0450 0.6169 

N1=56, N2=0, N3=242 

T = 100 λ  0.4933 0.3591 0.1809 0.3792 0.7761 

1β  40.9710 144.2587 1.9585 4.3445 27.7987 

2β  1.2856 3.0677 0.0082 0.0538 0.7242 

N1=23, N2=0, N3=119 

T = 200 λ  0.4713 0.3257 0.1879 0.3519 0.7190 

1β  27.5082 69.8728 2.0090 4.1275 22.4976 

2β  1.0232 2.4328 0.0190 0.0608 0.4831 

N1=3, N2=0, N3=165 
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Table 2. BC MLE, proposed estimator, and Powell’s estimator under heteroscedasticity ( 0λ =0.4)   

    Mean STD Q1 Median Q3 

BC MLE 

T = 50 λ  0.2561 0.0460 0.2249 0.2544 0.2848 

1β  1.7630 0.3765 1.4876 1.6988 1.9863 

2β  0.1017 0.0645 0.0594 0.0936 0.1390 

T = 100 λ  0.2569 0.0320 0.2347 0.2553 0.2777 

1β  1.7486 0.2770 1.5564 1.7143 1.8933 

2β  0.0994 0.0406 0.0711 0.0952 0.1256 

T = 200 λ  0.2564 0.0217 0.2428 0.2562 0.2705 

1β  1.7370 0.1832 1.6060 1.7312 1.8408 

2β  0.0975 0.0287 0.0778 0.0957 0.1163 

Proposed Estimator     

T = 50 λ  0.4234 0.1293 0.3356 0.4053 0.4836 

1β  2.6058 1.4509 1.9266 2.4520 3.1006 

2β  0.5666 1.7228 0.1248 0.2483 0.5043 

T = 100 λ  0.4135 0.0776 0.3598 0.4066 0.4570 

1β  2.6158 0.7699 2.1544 2.4843 2.9169 

2β  0.3324 0.2783 0.1617 0.2624 0.4228 

T = 200 λ  0.4066 0.0562 0.3708 0.4021 0.4391 

1β  2.5570 0.4757 2.2451 2.4935 2.8151 

2β  0.2896 0.1597 0.1843 0.2504 0.3520 

Powell's Estimator 

T = 50 λ  0.4532 0.3360 0.1433 0.3869 0.7521 

1β  3.3420 4.0932 1.2228 1.7813 3.6622 

2β  1.8866 3.1677 0.0271 0.1809 2.2608 

N1=79, N2=0, N3=127 

T = 100 λ  0.4085 0.3174 0.1362 0.2987 0.6841 

1β  2.9038 3.0840 1.2667 1.7109 3.3203 

2β  1.4593 2.7281 0.0286 0.1210 1.1863 

N1=34, N2=0, N3=164 

T = 200 λ  0.4080 0.2990 0.0744 0.1492 0.3170 

1β  2.9569 2.2461 1.3233 1.7966 3.7187 

2β  1.2648 2.4834 0.0343 0.1159 1.0618 

N1=15, N2=0, N3=206 
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