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Abstract: This paper first derives the limiting distributions of the residual and the squared residual autocorre-
lation functions of the nonstationary autoregressive moving-average model, respectively. We then use them to
construct two portmanteau statistics for testing the adequacy of the fitted model. Simulation results show that
the tests have reasonable empirical sizes and powers in the finite samples.

Keywords: Portmanteau test, Nonstationary ARMA, Residual ACFs, Squared residual ACFs

20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013 
www.mssanz.org.au/modsim2013

1338



S.-Q. Ling, K. Zhu and C.-Y. Chong, Diagnostic checking for Non-stationary ARMA Models

1 INTRODUCTION

Diagnostic checking is one of the most important steps in time series modeling. Box and Pierce (1970)
proposed a portmanteau statistic based on the residual autocorrelation functions (ACFs) of the autoregressive
moving-average (ARMA) model for testing the adequacy of the fitted model. Ljung and Box (1978) suggested
a simple test statistic, which is a modification of Box and Pierce’s statistic, and is easy to calculate. McLeod
(1978) extended their results directly to more general situations. McLeod and Li (1983) proposed a new
portmanteau statistic based on the squared residual ACFs. All these tests were developed for stationary time
series models.

Shin and Lee (1996) proposed a portmanteau statistic for the nonstationary AR model. This statistic is asymp-
totically follows a χ2 distribution. However, the corresponding result has not been established for the nonsta-
tionary ARMA (NARMA) model. Testing the unit root in the NARMA model is one of the most important
issues in studies of times series and econometrics. The Dickey-Fuller tests have been extensively used in the
literature. However, an adequate model is essential for the use of these tests. This paper first derives the limit-
ing distributions of the residual ACFs and the squared residual ACFs of the NARMA model, respectively, and
then uses them to construct two portmanteau statistics.

Throughout this paper, the following notation are commonly used. O(1)(Op(1)) denotes a series of numbers
(random numbers) that are bounded (in probability). o(1)(op(1)) denotes a series of numbers (random num-

bers) converging to zero (in probability). D−→ and
p−→ denote convergence in distribution and in probability,

respectively. V ′ denotes the transpose of vector V . D[0, 1] denotes the space of function f(s) on [0, 1], which
is defined and equipped with the Skorokhod topology in Billingsley (1968).

2 REVIEW OF NONSTATIONARY ARMA MODELS

In this section, we review some results on the estimation of the NARMA model.

2.1 MODELS

Let {Yt}nt=1 be a set of observations generated by the NARMA(p, q) model,

φ(L)Yt = Θ(L) εt , (1)

where {εt} is a sequence of unobservable independent and identically distributed (i.i.d.) errors with mean zero
and unknown variance σ2

ε , φ(L) = 1 − φ1L − · · · − φpLp and θ(L) = 1 − θ1L − · · · − θqLq . We assume
that φ(L) = 0 has one root that is equal to 1 and its other roots are outside the unit circle, and all the roots of
θ(L) = 0 lie outside the unit circle. Model (1) is nonstationary in this case.

Let Wt = Yt − Yt−1. Then, model (1) can be expressed in the error-correction form as

Wt = CYt−1 +

p−1∑
j=1

φ∗j Wt−j + εt −
q∑
j=1

θj εt−j , (2)

where C = −φ(1) = −(1 −
∑p
j=1 φj) and φ∗j = −

∑p
i=j+1 φi. We let φ∗(L) = 1 −

∑p−1
j=1 φ

∗
jL

j . Since
C = −φ(1) = −(1−

∑p
j=1 φj) = 0, Wt has a stationary representation,

Wt = ψθ(L)εt, (3)

where ψθ(L) = ψ(L)θ(L) and ψ(L) = φ∗−1(L) = (1−
∑p−1
j=1 φ

∗
jL

j)
−1

=
∑∞
k=0 ψkL

k, ψ0 = 1, and
ψk = O(ρk) with ρ ∈ (0, 1), see Hannan (1970, p.11).

2.2 LIMITING DISTRIBUTION OF GAUSSIAN ESTIMATORS

Denote β = [C,α′]′ and β0 be its true value, where α = [φ∗′, θ′]′, φ∗ = [φ∗1, · · · , φ∗p−1]′ and θ = [θ1, · · · , θq]′.
Let β̂ be the Gaussian estimator of β. Taking the first-order partial derivatives with respect to β in (2), we have

Xt−1 ≡ −
∂εt
∂β

= [−∂εt
∂C

, U ′t−1 ]′,
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where Ut−1 = −∂εt/∂α. Xt satisfies the following recursive equation:

( 1−
q∑
j=1

θjL
j )Xt−1 = [Yt−1,Wt−1, · · · ,Wt−p+1,−εt−1, · · · ,−εt−q ]′ ≡ X∗t−1. (4)

Similar to (4), the vector Ut satisfies the following recursive equation:

( 1−
q∑
j=1

θjL
j )Ut−1 = [Wt−1, · · · ,Wt−p+1,−εt−1, · · · ,−εt−q ]′ ≡ U∗t−1. (5)

Note that U∗t is stationary. The following Lemma 2.1 is Proposition 17.3 in Hamilton (1994).

Lemma 2.1 Let Wt =
∑∞
j=0 ψ̃jεt−j , where ψ̃j = O(ρj) with ρ ∈ (0, 1). Define γj = E(WtWt−j)

= σ2
ε

∑∞
s=0 ψ̃sψ̃s+j for j = 1, 2, · · · , λ = σε

∑∞
j=0 ψ̃j and Yt =

∑t
s=1Ws for t = 1, · · · , n with Y0 =

0. Then

(i) 1√
n

∑n
t=1Wt

D−→ λω(τ) in D[0, 1],

(ii) 1√
n

∑n
t=1Wt−jεt

D−→ N(0, σ2
εγ0) for j = 1, 2, · · · ,

(iii) 1
n

∑n
t=1 Yt−1εt

D−→ σελ
∫ 1

0
ω(τ)dω(τ),

(iv) 1
n

∑n
t=1 Yt−1Wt−j

D−→

{
1
2{λ

2ω2(1)− γ0} for j = 0.
1
2{λ

2ω2(1)− γ0}+
∑j−1
i=0 γi for j = 1, 2, · · · .

The following Theorem 2.1 is Theorem 1 in Yap and Reinsel (1995).

Theorem 2.1 Under the assumptions of model (1), it follows that

(i) n(Ĉ − C) = Θ
( 1

n

n∑
t=1

Yt−1εt

) ( 1

n2

n∑
t=1

Y 2
t−1

)−1
+op(1)

D−→
{∫ 1

0

B(u )dB(u)

} {∫ 1

0

B2(u)du

}−1
Ψ−1,

(6)

where Θ = θ(1) = 1−
∑q
j=1 θj ,Ψ = ψ(1) = φ∗−1(1) and B(u) is a standard Brownian motion;

(ii)
√
n(α̂− α0) =

( 1

n

n∑
t=1

Ut−1U
′
t−1

σ2
ε

)−1( 1√
n

n∑
t=1

Ut−1εt
σ2
ε

)
+ op(1)

D−→ N(0, V −1),

(7)

where V = E(Ut−1U
′
t−1)/σ2

ε .

3 MAIN RESULTS

This section discusses the main results of the paper. We first derive the limiting distributions of the residual
ACFs and the squared residual ACFs of model (1) and then use them to construct the portmanteau statistics.

3.1 LIMITING DISTRIBUTION OF THE RESIDUAL ACFS

Let εt(β) be defined as

εt(β) =

q∑
j=1

θj εt−j(β) +Wt − C Yt−1 −
p−1∑
j=1

φ∗j Wt−j . (8)

Denote ε̂t = εt(β̂), where β̂ is defined as in Section 2. Thus, ε̂t is the residual of model (1) when β0 is
estimated by β̂.
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The residual autocovariance (ACV) is defined as

γ̂k =
1

n

n−k∑
t=1

ε̂t ε̂t+k . (9)

When k = 0, we can show that

γ̂0 =
1

n

n∑
t=1

ε̂2t
p−→ σ2

ε , (10)

as n−→∞. The corresponding residual ACF is defined as

ρ̂k =
γ̂k
γ̂0

=

∑n−k
t=1 ε̂tε̂t+k∑n
t=1 ε̂

2
t

. (11)

Denote ρ̂ = (ρ̂1, · · · , ρ̂M )′. The aim of this section is to derive the limiting distribution of the vector
√
nρ̂.

We first consider γ̂k. (8) can be rewritten as

εt(β) = Wt − β′X∗t−1, (12)

where X∗t−1 = [Yt−1, W̃
′
t−1,−ε̃t−1(β)′]′, W̃t−1 = [Wt−1, · · · ,Wt−p+1]′ and ε̃t−1(β) = [ εt−1(β), · · · ,

εt−q(β)]′. Since εt(β0) = εt, by Taylor’s expansion, we have

1√
n

n−k∑
t=1

ε̂t ε̂t+k =
1√
n

n−k∑
t=1

εt(β̂) εt+k(β̂)

=
1√
n

n−k∑
t=1

εt εt+k +
1√
n

n−k∑
t=1

( β̂ − β0 )
′ ∂
[
εt(β) εt+k(β)

]
∂β

∣∣∣
β=β0

+
1

2
√
n

n−k∑
t=1

( β̂ − β0 )
′ ∂2
[
εt(β) εt+k(β)

]
∂β ∂β

′

∣∣∣
β=β∗

( β̂ − β0 )

≡ A1 +A2 +A3 ,

(13)

where β∗ = β0 + ρ ( β̂ − β0 ) with |ρ| < 1. Then, we give two lemmas and their proofs are given in the
Appendix.

Lemma 3.1 Under the assumption of model (1), it follows that

(i) 1
n
√
n

∑n−k
t=1

[
Yt+k−h−1 εt

]
= op(1),

(ii) 1
n
√
n

∑n−k
t=1

[
Yt−h−1 εt+k

]
= op(1),

(iii) 1
n

∑n−k
t=1

[
θ−1(L) W̃t+k−1

]
εt

p−→ E[ θ−1(L) W̃t+k−1 εt ],

(iv) 1
n

∑n−k
t=1

[
θ−1(L) W̃t−1

]
εt+k = op(1),

(v) 1
n

∑n−k
t=1

[
θ−1(L) ε̃t+k−1

]
εt

p−→ E[ θ−1(L) ε̃t+k−1 εt ],

(vi) 1
n

∑n−k
t=1

[
θ−1(L) ε̃t−1

]
εt+k = op(1).

Lemma 3.2 Under the assumption of model (1),

(i) A2 = −
{
E
(
Ut−1U

′
t−1

σ 2
ε

)−1(
1√
n

∑n−k
t=1

Ut+k−1εt+k

σ 2
ε

)}′
E(Ut+k−1εt) + op(1),

(ii) A3 = op(1).

Thus, we have the following theorem.
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Theorem 3.1 Under the assumption of model (1) or (2),

√
nρ̂ =

√
n(ρ̂1, · · · , ρ̂M )′

D−→ N(0,Σ),

where Σ = IM −D
′
Ω−1D,Ω−1 = E(Ut−1U

′
t−1)−1, Dk = E(Ut+k−1εt) and D = (D1, · · · , DM )/σε.

We consider the hypothesis:

H0 : Model (2) is correct vs

H1 : Model (2) is not correct

The portmanteau statistic is defined as

QM = nρ̂
′
( IM −D

′
Ω−1D )−1ρ̂.

By Theorem 3.1, under H0, QM is asymptotically follows a χ2 distribution with M degrees of freedom. QM
can be used to test the hypothesis H0 against H1. When H0 is accepted, we can claim that model (2) is
adequate for the data {Yt}nt=1 .

3.2 LINITING DISTRIBUTION OF THE SQUARED RESIDUAL ACFS

We define the squared residual autocovariance (ACV) as

γ̂k =
1

n

n−k∑
t=1

(
ε̂ 2
t − 1

) (
ε̂ 2
t+k − 1

)
. (14)

We assume Eε2t = σ2
ε = 1. When σ2

ε 6= 1, σ2
ε can be estimated by σ̂2

ε defined in (10). When k = 0, we can
show that

γ̂0 =
1

n

n∑
t=1

(
ε̂2t − 1

)2 p−→ Eε4t − 1 ≡ σ4, (15)

as n −→∞. The corresponding squared residual ACF is defined as

r̃k =
γ̂k
γ̂0

=

∑n−k
t=1

(
ε̂2t − 1

)(
ε̂2t+k − 1

)∑n
t=1

(
ε̂2t − 1

)2 . (16)

Denote R̃ = (r̃1, · · · , r̃M )′. The aim of this section is to derive the limiting distribution of the vector
√
nR̃.

Now, we first consider γ̂k. Since ε2t (β0) = ε2t , by Taylor’s expansion, we have

1√
n

n−k∑
t=1

(
ε̂ 2
t − 1

) (
ε̂ 2
t+k − 1

)
=

1√
n

n−k∑
t=1

(
ε 2
t (β̂)− 1

) (
ε 2
t+k(β̂)− 1

)
=

1√
n

n−k∑
t=1

(
ε 2
t − 1

) (
ε 2
t+k − 1

)

+
1√
n

n−k∑
t=1

( β̂ − β0 )
′ ∂
[ (
ε 2
t (β)− 1

) (
ε 2
t+k(β)− 1

) ]
∂β

∣∣∣
β=β0

+
1

2
√
n

n−k∑
t=1

( β̂ − β0 )
′ ∂2
[ (
ε 2
t (β)− 1

) (
ε 2
t+k(β)− 1

) ]
∂β ∂β

′

∣∣∣
β=β∗

( β̂ − β0 )

≡ B1 +B2 +B3 ,

(17)
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where β∗ = β0 + ρ ( β̂ − β0 ), with | ρ | < 1. Then, we give two basic lemmas and their proofs are given in
the Appendix.

Lemma 3.3 Suppose Yt, W̃t−1, and ε̃t−1 are defined as in (12). Let ξt = εt(ε
2
t+k − 1) and ξt+k =

εt+k(ε2t − 1). If σ4 <∞, then it follows that

(i) 1
n
√
n

∑n−k
t=1

[
Yt+k−h−1 ξt+k

]
= op(1),

(ii) 1
n
√
n

∑n−k
t=1

[
Yt−h−1 ξt

]
= op(1),

(iii) 1
n

∑n−k
t=1

[
θ−1(L) W̃t+k−1

]
ξt+k = op(1),

(iv) 1
n

∑n−k
t=1

[
θ−1(L) W̃t−1

]
ξt = op(1),

(v) 1
n

∑n−k
t=1

[
θ−1(L) ε̃t+k−1

]
ξt+k = op(1),

(vi) 1
n

∑n−k
t=1

[
θ−1(L) ε̃t−1

]
ξt = op(1).

Lemma 3.4 Under the assumption of model (1),

(i) B2 = op(1),

(ii) B3 = op(1).

Thus, we have the following theorem.

Theorem 3.2 If the assumption of model (1) or (2) holds and σ4 <∞, then

√
nR̃ =

√
n(r̃1, · · · , r̃M )′

D−→ N(0, IM ).

We consider the following hypothesis:

H0 : Model (2) is correct vs

H1 : Model (2) is not correct

The new portmantaue statistic is defined as

Q̃M = nR̃′R̃.

By Theorem 3.2, under H0, Q̃M is asymptotically follows a χ2 distribution with M degrees of freedom.
Q̃M can be used to test the hypothesis H0 against H1. When H0 is accepted, we can claim that model (2) is
adequate for the data {Yt}nt=1.
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