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Abstract:   We have previously developed a short time scale forecasting tool for solar radiation [Huang et 
al., 2013], and also a mechanism for estimating the conditional variance of wind farm output at particular 
time scales using data at a higher frequency, see [Agrawal et al., 2010, 2013]. The term conditional variance 
reflects the idea that the variance is changing with time (heteroscedastic) rather than being homogeneous in 
time (homoscedastic). In this paper, we will describe the application of the solar radiation forecasting tool 
(which is referred as CARDS model) to wind farm output to obtain forecasts of the level of output on two 
specific time scales, five minute and half hour. These are the time scales at which the Australian Electricity 
Market operates. Hence for efficient operation of the electricity grid, it is crucial to have knowledge of 
forecast of wind energy 5 minute ahead as well as half an hour ahead together with appropriate error 
bounds. This is exactly the aim of this paper which we achieve using the techniques developed in [Huang et 
al., 2013] and [Agrawal et al., 2013].

In more explicit terms, knowledge of {Fτ}tτ=t0 , the history of the wind energy output series up to time t allows
us to forecast the level of output at time t+ 1, this we achieve using the forecasting tool developed in [Huang
et al., 2013]. We then estimate the conditional variance at time t using the techniques developed in [Agrawal
et al., 2013]. To facilitate this, we did have high frequency data available at the 10 second time scale. Once we
obtained a time series of conditional standard deviation, {στ}tτ=t0 , up to the current time step t, we reinvoke
CARDS model to obtain a forecast of the conditional standard deviation at time t + 1, that is, to get σ̂t+1.
Upper and lower bounds of the forecasted wind farm output are thus constructed as Ft+1 ± rσ̂t+1 where r is
a positive real number.

An interesting outcome is that 93.5% of the data coverage is contained in the interval Ft+1 ± σ̂t+1 for the
30 minute ahead forecast, while for 5 minute ahead forecast 94.2% of the data coverage is contained in the
constructed interval Ft+1±rσ̂t+1 with r = 0.65. In other words, a lower rate of conditional standard deviation
suffices to contain most of the observations at the 5 minute time scale.

This allows us to not only have a forecast of the output but to also put error bounds on that forecast. This
type of information is crucial for efficient operation of the electricity grid. This is particularly true in South
Australia where wind farms provided 26 % of the electricity generation in the financial year ending June 2012.
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1 INTRODUCTION

Simply obtaining the level of forecasting is often not adequate, specifically, when a time varying intermittency
and the stakeholder’s risk are involved. Therefore, we need to know error bounds of the forecast. This type
of information is crucial for efficient operation of the electricity grid, in particular, in South Australia where
wind farms provided 26 % of the electricity generation in the financial year ending June 2012.

We have previously developed a short time scale forecasting tool for solar radiation [Huang et al., 2013],
and also a mechanism for estimating the conditional variance of wind farm output at particular time scales
using data at a higher frequency time scale, see [Agrawal et al., 2013]. The term conditional variance reflects
the idea that the variance is changing with time (heteroscedastic) rather than being homogeneous in time
(homoscedastic). In this paper, we will describe an application of the solar radiation forecasting tool (which is
referred as CARDS model) to wind farm output to obtain forecasts of the level of output on two specific time
scales, five minute and half hour. These are the time scales at which the Australian Electricity Market operates.
Hence for efficient operation of the electricity grid, it is crucial to have knowledge of forecast of wind energy
5 minute ahead as well as half an hour ahead together with appropriate error bounds. This is exactly the aim of
this paper which we achieve using the techniques developed in [Huang et al., 2013] and [Agrawal et al., 2013].

2 METHODOLOGY

To obtain the expected value of the wind energy output, that is the forecast of wind energy at time t+ 1 from
knowledge of the history of output up to time t, we use the method developed in [Huang et al., 2013]. This
model was developed for forecasting solar radiation, and is called the CARDS model1. Fundamentally, the
CARDS model is based on a combination of an autoregressive (AR) model and a dynamical system model,
observing a certain set of rules, which is further enhanced using a predictor-corrector kind of component,
called the ’fixed component’. While autoregressive models are widely known in the time series literature, the
dynamical system model considered in the method is comparatively less well known, although, it has existed
in the literature since as early as 1960’s. The model which originated from biophysics (known in the literature
as the FitzHugh-Nagumo system, [FitzHugh, 1961]), performed very well for power market modelling, see
[Lucheroni, 2007], [Lucheroni, 2009]. The same version as presented in [Lucheroni, 2009] was adapted in
[Huang et al., 2013] in the construction process of the CARDS model. For a detailed description and algorithm
of the CARDS model, the reader is referred to [Huang et al., 2013].

Let {Ft} denote the time series of wind energy output from a windfarm at a time scale of interest (5 minute
or half hourly). Given the level of wind energy output up to time t, using the CARDS model, suppose we
obtained forecasted energy Ft+1 at time t.

Our next aim is to construct error bounds of this forecast. To construct the error bounds one has to know the
variance at the time step of the forecast. When using time series models for the forecast, an estimate of the
variance at any lead is straightforward if the series is stationary in the variance. However, with wind farm
output, one observes stochastically changing variance similar to that exhibited by financial market variables,
which is referred to as conditional volatility (e.g., see [Poon and Granger, 2003]). In [Agrawal et al., 2013],
the authors developed a method of estimating time varying conditional variance using the higher frequency
data. We briefly outline the method here.

Suppose the high frequency data time series {Xτ} can be modelled as an autoregressive model, say an AR(p)
model: Xτ = α1Xτ−1 + α2Xτ−2 + . . . + αpXτ−p + Zτ , where α1, α2, . . . αp are the parameters, and
{Zτ} ∼ WN(0, σ2). Let the time scale of interest consist of N0 high frequency data points. For example, if
high frequency data is available at the time scale of 10 seconds and the time scale of interest is 5 minute, then
N0 = 30 because there are 30 ten seconds in a 5 minute duration. Let {Yt} be the time series at the time scale
of interest, so that the two time series are related in the following manner:

Yt = Xt +Xt− 1
N0

+Xt− 2
N0

+ . . .+X
t−N0−1

N0

(1)

It is proved in [Agrawal et al., 2013], under a reasonable assumption that the residuals {Zτ}′s remain i.i.d.
(independent and identically distributed) within the each time duration (t− 1, t], that the variance, σ2(Yt), at
the time step t is given by the following expression:

1The acronym CARDS stands for Coupled AutoRegressive and Dynamical System.
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σ2(Yt) =

N0−1∑
n=0

(
n∑

i=0

ψi

)2
σ2(Zt) +2N0−1∑

n=N0

(
n∑

i=0

ψi −
n−N0∑
i=0

ψi

)2
σ2(Zt−1) +3N0−1∑

n=2N0

(
n∑

i=0

ψi −
n−N0∑
i=0

ψi

)2
σ2(Zt−2) + . . . , (2)

where σ2(Zt−k) is the variance of Zt−k, . . . Zt−k−N0−1
N0

. One does not need to know each individual ψi but

the partial sums
n∑

i=0

ψi, which appear in equation (2) as a building block, can be expressed entirely in terms of

the AR(p) parameters as

n∑
k=0

ψk =
n∑

k=0

∑
(n1,...,np)∈Ak

(n1 + n2 + . . .+ np)!

n1!n2! . . . np!
αn1
1 αn2

2 . . . αnp
p (3)

where n1, n2, . . . , np are non-negative integers and Ak = {(n1, n2, . . . np) | n1 + 2n2 + . . .+ pnp = k} for
each k = 0, 1, 2, . . . n. See [Agrawal et al., 2013] for more details.

We emphasise that it is a method of nowcasting (not forecasting). Using this method, we construct a time
series of conditional standard deviations {σi}ti=i0

up to the current time step t. We then reinvoke the methods
developed in [Huang et al., 2013], namely the CARDS model, to get σ̂t+1, the forecast for the conditional
standard deviation at next time step t+1. Upper and lower bounds of the forecasted wind farm output are thus
constructed as Ft+1 ± rσ̂t+1 where r is a positive real number.

3 RESULTS
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Figure 1: Wind energy output from a South Australian windfarm at 5 minute time scale.
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Figure 2: Estimated conditional standard deviation at 5 minute time scale.
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Figure 3: Upper and Lower bounds of 5 minute ahead wind energy forecast.
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3.1 Results at 5 minute time scale

Figure 1 shows a snapshot of energy output from a wind farm in South Australia at 5 minute time scale.
The two main features of the wind farm output are evident from the Figure 1, a highly volatile nature and
intermittency. The conditional standard deviation time series estimated using the higher frequency data (which
was available to us at 10 second time scale), is shown in Figure 2. The volatility clustering is clearly present
in the wind energy data, that is, the periods of low volatility are followed by the periods of high volatility.
The CARDS model is reinvoked on the conditional standard deviation time series to obtain a 5 minute ahead
forecast of conditional standard deviation (that is, to get σ̂t+1). However, as it turned out, at the 5 minute time
scale, anARMA(2, 2) model performs as well as does a CARDS model for the conditional standard deviation
time series. We rely on the use of an ARMA(2, 2) at this stage, for the sake of parsimony.

The 5 minute ahead forecast obtained using the CARDS model, together with upper and lower bounds of the
forecast is displayed in Figure 3. It is an interesting finding that 94.2% of the data coverage is contained in the
constructed interval Ft+1 ± rσ̂t+1 with r = 0.65 for the 5 minute ahead forecast. The average thickness of
the forecasted band (that is, average of the difference of upper and lower bound of the forecast) is found to be
173.5, although it should be noted that the bounds are tighter when the level of wind energy output is low.

3.2 Results at 30 minute time scale

The conditional standard deviation time series estimated using the higher frequency data (at 10 second time
scale) from the same windfarm, is shown in Figure 4. The CARDS model was invoked on the conditional
standard deviation time series to obtain a 30 minute ahead forecast of conditional standard deviation. However,
it turned out that at the 30 minute time scale, an AR(3) model performs as well as does a CARDS model for
the conditional standard deviation time series. We go with an ARMA(2, 2) at this stage, for the sake of
parsimony.

The 30 minute ahead forecast obtained using the CARDS model, together with upper and lower bounds of the
forecast is displayed in Figure 5. It should be noted that 93.5% of the data coverage is contained in the interval
Ft+1 ± σ̂t+1 for the 30 minute ahead forecast. The average thickness of the forecasted band (that is, average
of the difference of upper and lower bound of the forecast) is 1514.9, although, the bounds are tighter when
the level of wind energy output is low.
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Figure 4: Estimated conditional standard deviation at 30 minute time scale.

4 CONCLUSIONS

It is shown that the the CARDS model which was originally created for solar radiation forecasting in [Huang
et al., 2013], performs perfectly well for the wind energy forecasting at both the time scales of interest. The
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Figure 5: Upper and Lower bounds of 30 minute ahead wind energy forecast.

conditional standard deviation time series at the 5 minute time scale constructed from the high frequency data
turn out to be an AR(2, 2) process (as a parsimonious model). Consequently, thisAR(2, 2) model is exploited
to forecast the conditional standard deviation 5 minute ahead, which is then utilised to obtain prediction inter-
vals for the 5 minute ahead forecast of wind energy. The prediction intervals are narrower at times when the
volatility is low.

In the case of half hourly time scale the forecasting it done using CARDS model, and the conditional stan-
dard deviation series is constructed using the higher frequency data at 10 second time scale. The conditional
standard deviation series so constructed turns out to be an AR(3) model (as a parsimonious model) which
is then used to forecast conditional standard deviation 30 minute ahead. Perhaps, the conditional standard
deviation series being an AR(3) process at the half hourly time scale can be perceived as the persistence level
of volatility is higher at half hourly scale as compared to that at 5 minute time scale.
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Figure 6: Distribution of the residuals from the CARDS model at 5 minute time scale.

Remarkably, almost 94% of the data coverage is contained in the constructed interval Ft+1 ± rσ̂t+1 with
r = 0.65 for the 5 minute ahead forecast, while with the half hourly timescale the same percentage of the
observed data falls within the constructed interval Ft+1 ± rσ̂t+1 with r = 1. Arguably, a lower rate of
conditional standard deviation suffices to contain most of the observations at the 5 minute time scale. This can
be explained through the distribution of the errors from the CARDS model, see Figure 6 and Figure 7. As the
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Figure 7: Distribution of the residuals from the CARDS model at 30 minute time scale.

peak is sharper and more concentrated around the center for the 5 minute time scale in comparison to that for
the half hourly case, a lower rate of conditional standard deviation suffices to provide the same percentage of
coverage.
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