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Abstract: An Artificial Neural Network (ANN) is a computational modeling tool which has found 
extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model 
problems through learning by example, rather than by fully understanding the detailed characteristics and 
physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in 
predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel 
engine operation. In this model, temperature and chemical composition of biodiesel were used as input 
variables. In order to obtain the necessary data for model development, the chemical composition and 
temperature dependent fuel properties of ten different types of biodiesels were measured experimentally 
using laboratory standard testing equipments following internationally recognized testing procedures. The 
Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN 
model on a personal computer. The network architecture was optimised following a trial and error method to 
obtain the best prediction of the kinematic viscosity. The predictive performance of the model was 
determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum 
average error percentage (MAEP) between predicted and experimental results. This study found that ANN is 
highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find 
a meaningful relationship between biodiesel chemical composition and fuel properties at different 
temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict 
biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.   
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1. INTRODUCTION 
 
Vegetable oil methyl or ethyl esters, commonly referred to as ‘biodiesel’, are a renewable liquid fuel 
alternative to petroleum diesel. They are made from agricultural products, forest organic matter and animal 
fat feedstocks. In technical terms, biodiesel is diesel engine fuel comprised of mono-alkyle esters of long 
chain fatty acids derived from vegetable oil or animal fats, designated B100 and meeting the requirements of 
ASTM D 6751or EN 14214 (Demirbas, 2008). These mono-alkyl esters are the main chemical species that 
give biodiesel similar or better fuel properties compared with petroleum diesel (Fernando et al., 2007).  
 
Biodiesel is considered as an alternative transport fuel made from domestically produced oilseed crops and 
animal fat which can be directly used on conventional unmodified diesel engines. Biodiesel is safe to handle, 
store and transport because it is biodegradable, non-toxic and has a high flash point compared to that of 
petroleum diesel fuel. One of the major advantages of biodiesel is that it has potential to reduce dependency 
of imported petroleum. In fuel property terms biodiesel usually has a higher cetane rating compared to that of 
petroleum diesel which improves engine performance. In addition has a much better lubricant properties than 
petroleum diesel and which can extend engine life (Haseeb et. al., 2011). Biodiesel is more environmentally 
friendly due to its clean burning properties. It can reduce emission up to 75% than conventional diesel fuel, 
and substantially reduces unburned hydrocarbons, carbon monoxides and particulate matters, and also 
eliminates sulphur dioxide emissions in exhaust emissions. The exhaust emissions of particulate matter by 
mass from biodiesel have been found to be 30% lower than overall particulate matter emissions from fossil 
diesel. The exhaust emissions of total hydrocarbons are up to 93% lower for biodiesel than diesel fuel 
(Hoekman et. al., 2012).However, as a fuel, there are currently several disadvantages to using biodiesel in 
diesel engine applications. The major disadvantage is its higher kinematic viscosity compared to 
conventional diesel fuel especially at low temperature. These differences mainly result from the difference in 
chemical compositions between petroleum diesel and biodiesel (Jahirul et. al., 2013). Viscosity is one of the 
most critical features of a liquid fuel which is defined as the resistance to shear or flow. It is also highly 
dependent on temperature and it describes the behavior of a liquid in motion near a solid boundary such as 
the walls of a pipe. It plays a dominant role in fuel atomization and therefore the fuel-air mixture quality, 
combustion, and emission characteristics. (Lee et. al., 2002; Knothe and Steidle, 2005). On the other hand, 
very low fuel viscosity is not desirable because the fuel then doesn’t provide sufficient lubrication for the 
precision fit of fuel injection pumps, resulting in leakage or increased wear. Therefore, all biodiesel standards 
define the upper and lower limits for the kinematic viscosity of biodiesel.  
 
The kinematic viscosity of biodiesel is dependent on its complex chemical composition. As the lengths of the 
fatty acid chain in the ester molecules increased, so did the degree of random intermolecular interactions 
which eventually increases kinematic viscosity of biodiesel. The effect becomes more evident at lower 
temperatures, where molecular movements are more restricted (Knothe and Steidle, 2007). Other factors that 
influence biodiesel viscosity include: number of double bonds, molecular weight , branching hydroxyl groups 
and the amount of impurities, such as unreacted glycerides or glycerol, amount of Carbon (C), Oxygen (O), 
Hydrogen (H) etc (Refaat, 2009).  
 
In recent years, ANN modeling techniques have gained in popularity due to their ability to accurately predict 
from small data sets (examples) rather than from larger data sets requiring costly and time-consuming studies 
and experiments.  ANN has been successfully applied in various disciplines, including neuroscience (Alkim 
et. al., 2012), mathematical and computational analysis (Costa et. al., 2012), learning systems (Carrillo et. al., 
2012), combustion (Christo et. al., 1996) and engineering design and application (Minnett et. al., 2011). In 
the existing literatures, it was shown that the use of ANN is a powerful modeling tool that has the ability to 
identify complex relationships from input–output data. However, no investigation was found to develop 
ANN model to predict the kinematic viscosity of biodiesel at different temperature. Such an ANN prediction 
model has been developed based on the chemical composition of biodiesel. The developed ANN model has 
been simulated with new input data and prediction ability was presented graphically.    
 
2.  ARTIFICIAL NEURAL NETWORKS (ANN) 
 
The foundation of artificial neural networks (ANN) in a scientific sense begins with a biological neuron. In 
the brain, there is a flow of coded information (using electrochemical media, the so-called neurotransmitters) 
from the synapses towards the axon. The axon of each neuron transmits information to a number of other 
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neurons. Groups of neurons are organised into sub-systems and the integration of these sub-systems forms 
the brain. On the other hand, an ANN is composed of a large number of simple processing units called 
neurons which are fully connected to each other through adoptable synaptic weight. In the training process, 
weights are adjusted to minimise the error between actual output and desired output (Basheer and Hajmeer, 
2000).  

The most important feature of artificial neural 
networks is their ability to solve problems through 
learning by example, rather than by fully 
understanding the detailed characteristics of the 
systems. This feature makes it very useful 
because it works like a ‘black box’ model, 
whereby the ANN does not require detail or 
complete information about the problem, but can 
be formed with sets of data inputs and outputs. It 
has a natural propensity to store experiential 
knowledge and to make it available for use 
(Figure 1). Therefore, this nonlinear computer 
algorithm can model large and complex systems 
with many interrelated parameters (Arcakhoglu 
et. al., 2004). 

 

Figure 1. Working principle of ANN (Jahirul et. 
al., 201

3.  METHODOLOGY  
 
Biodiesel is made in a chemical process called transesterification, where organically derived oils or fat are 
combined with alcohol (usually methanol) and chemically altered to form fatty esters such as methyl ester. 
The chemical composition and fatty acid profile of biodiesel is identical to that of its parent oil or fat. The 
properties of biodiesel fuel are also determined by the amounts of individual fatty acid ester that are present 
in the molecules. In the present study, experiments were conducted on 10 biodiesel samples to develop ANN 
prediction model for kinematic viscosity in different temperature condition. Among the samples, biodiesel 
derived from canola oil (COME), cotton seed oil (CSOME) and Soybean oil (SOME) are commercially 
available. The other biodiesel samples such as POME-1, POME-2, POME-3, POME-4, POME-5, POME-6 
and POME-7 are produced by fractionating of palm oil biodiesel.  
 
Chemical composition and fatty acid profile of biodiesel samples were analysed using Gas chromatography–
mass spectrometry (GC-MS) following EN 14103 standards. In this process, biodiesel samples were diluted 
1:100 with n-hexane. Sample injections were 1uL into a PerkinElmer Clarus 580 GC-MS fitted with Elite - 
5MS, 30m x 0.25mm x 0.25um column. The split ratio was 30:1 with a column flow of 1mL/min He. The 
temperature program was 120 °C initially, holding 0.5min, ramping at the rate of 10 °C/min until 310 °C, and 
holding for 2 min. Masses were analysed over the range 40-350 m/z.  
 
Viscosity at different temperature was measured 
using The Brookfield DV-III Rheometer and 
following the ASTM D445 standard test method. 
Brookfield Rheometer was controlled externally 
via accompanying software on a computer. The 
working principle of the DV-III Rheometer is to 
drive a spindle (which is immersed in the test 
fluid) through a calibrated spring. The viscous 
drag of the fluid against the spindle is measured 
by the spring deflection is measured using rotary 
transducer. The temperature of the sample is 
controlled by an oil bath connected with a sample 
cup. Experiments were carried out from 20 to 100 
°C at 5 °C intervals. In order to reduce the 
experimental error all experiments were replicated 
for 3 times and the average data were taken.   

 

 

 Figure 2: ANN model for kinematic viscosity 
prediction of biodiese
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ANN represents a mathematical relationship between input and output parameters of a system as like a black 
box model. The selection of input parameters which contribute to the output is therefore a crucial task. It is 
also desirable to minimize the number of input parameters for an ANN system in order to reduce the 
computational time. In general, the best input parameters are being selected based on the understanding of the
physics of a problem. Published literatures, experimental works and numerical modeling have prove that 
kinematic viscosity of biodiesel is a function of temperature, chemical composition and fatty acid profile of 
methyl ester. In the present study, 23 variables are used as input parameters in developing of ANN for 
viscosity prediction. These parameters are include: temperature (T), saturation factor (SFA), mono-
unsaturation factor (MUFA), poli-unsaturatin factor (PUFA), unsaturation factor (UFS), iodine value (IV), 
saponification value (SV), average chain length (ACL), carbon (C), hydrogen (H), oxygen (O), glycerol 
content and mass percentage of 11 fatty acid methyl esters that are commonly found in the biodiesel.  
 
The feed-forward learning algorithm back-propagation was applied for the single hidden layer shown in the 
Figure 2.  The Neural Network has been optimized using the MATLAB Version R2012a Neural Network 
Toolbox. The Number of hidden neurons in the hidden layer is a crucial parameter. If the number is too 
small, the ANN may not reflect the complex relationship between input and output value. On the contrary, a 
large number may create such a complex network that might lead to a very large output error caused by over 
fitting of the training sample set. In the present study, the number neurons in the hidden layer have been 
optimized using trial and error methods during the training stage. Neurons in the input layer have no transfer 
function. A logistic sigmoid (logsig) transfer function has been used in hidden layer while purelinear 
(purelin) transfer function has been used in output layer.  
Using the results produced by the network, 
statistical methods have been used to investigate 
the prediction performance of NN results. To judge 
the prediction performance of a network, several 
performance measures are used. Those include 
statistical analysis in terms of absolute fraction of 
variance (R2), root mean squared (RMS) and 
maximum average error percentage (MAEP). 
Formulas to calculate the error parameters are 
shown in Equation 2 to 4. 
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Where, Ea-Actual result; Ep-Predicted result; Em-Mean value; N-Number of pattern 

4. RESULTS AND DISCUSSION 

The ANN model establishes a relationship between input and output variables. The ranges of variation in the 
experimental data in ANN training processes are crucial for the robustness of the prediction ability. Table 1 
shows the measured fatty acid profile of 10 biodiesel samples that have been used to train the ANN model for 
kinematic viscosity prediction.  The fatty acid methyl esters ranges from 8 to 20 carbon chain length are quite 
evenly distributed in the samples.  The average carbon chain lengths of biodiesels are ranges from 8.90 to 
17.94 as shown in Table 1. The chemical compositions of the samples are also combined with saturated and 
unsaturated fatty acid methyl esters. The unsaturated fraction of fatty acid methyl esters (UFA) are range 
from 0 to 91.93 by weight percentage where mono-unsaturation factors (MUFA) and poli-unsaturation 
factors (PUFA) range from 0 to 73 and 0 to 55.04 respectively. The other chemical properties including       
iodine value (IV), soponification value (SV), average chain length (ACL), carbon (C), hydrogen (H), oxygen 
(O) and glycerol larger ranges as shown in Table 1. Therefore the results of chemical composition which 
illustrate that the 10 biodiesel samples are suitable for developing robust ANN prediction model for 
predicting temperature dependent biodiesel viscosity.  
 
Figure 3 graphically shows the experimental results of the kinematic viscosity of ten biodiesel samples at 
different temperature ranging from 20 °C to 100 °C. It can be seen from Figure 4 that the kinematic viscosity 
decreases for all biodiesel samples with the increase of temperature. The reduction of kinematic viscosity is 
prominent in the temperature range 20 °C to 50 °C, while it has less influence on temperature in the range of 
50 °C to 100 °C. This can be explained by a change in chemical composition of biodiesel because of 
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Table 1: Chemical properties of the 10 biodiesel samples 

COME CSOME SOME FPOME 
1 2 3 4 5 6 7 

C8:0 (wt%) 0 0 0 55.12 0.31 0 27.72 0.16 27.56 0 
C10:0 (wt%) 0 0 0 44.77 0.75 0 22.76 0.37 22.39 0 
C12:0 (wt%) 0.31 0 0 0 72.89 0 36.45 36.45 0 0 
C14:0 (wt%) 0.35 0.53 0 0 23.61 0 11.81 11.80 0 0.03 
C16:0 (wt%) 11.93 2.51 11.08 0 2.350 20.52 1.17 11.44 10.26 4.45 
C16:1(wt%) 0.22 0.55 0.18 0 0 0 0 0 0 0.12 
C18:0 (wt%) 2.43 4.13 5.23 0 0 9.00 0 4.50 4.50 2.53 
C18:1 (wt%) 55.72 35.78 33.82 0 0 66.08 0 33.04 33.04 72.09 
C18:2 (wt%) 26.87 55.04 49.38 0 0 4.20 0 2.10 2.10 19 
C20:0 (wt%) 0.320 0.31 0.18 0 0 0 0 0 0 0.49 
C20:1 (wt%) 0.570 0.30 0 0 0 0 0 0 0 1.03 
SFA (wt%) 15.55 7.68 16.62 99.89 99.91 29.52 99.90 64.72 64.71 7.69 
MUFA (wt%) 56.51 36.63 34.00 0.00 0.10 66.08 0.05 33.09 33.04 73.24 
PUFA (wt%) 26.87 55.04 49.38 0.00 0.00 4.20 0.00 2.10 2.10 18.69 
UFA (wt%) 83.38 91.67 83.38 0.00 0.10 70.28 0.05 35.19 35.14 91.93 
IV 99.47 132.67 120.04 0.00 0.11 67.03 0.06 33.57 33.52 99.65 
SV 199.15 198.43 201.14 359.61 270.70 201.93 315.15 236.32 280.77 198.35 
ACL 17.56 17.83 17.78 8.90 12.54 17.59 10.72 15.06 13.24 17.94 
C (wt%) 75.65 76.27 76.61 67.94 72.40 76.04 70.17 74.22 71.99 76.28 
H (wt%) 11.91 11.75 11.90 11.40 12.15 12.23 11.78 12.19 11.82 12.01 
O (wt%) 11.38 11.33 11.49 20.54 15.46 11.53 18.00 13.50 16.04 11.33 
Glycerol 1.03 0.58 0 0 0 0 0 0 0 0.38 

 

crystallization of high melting compounds at low 
temperature. Figure 3 also shows that the 
kinematic viscosities of biodiesel samples are 
significantly different from one another. This is 
mainly due to the different in chemical 
composition. The canola biodiesel showed the 
highest kinematic viscosities followed by tallow, 
FPOME-7, cottonseed oil, FPOME-3, soybean, 
FPOME-5, FPOME-2, FPOME-6, FPOME-4 and 
FPOME-1. It is well known that total glycerol 
content increases kinematic viscosity of biodiesel 
which has been evident in the experimental results 
found in this study. Similarly, other chemical 
compositions also have a similar effect 
experimental result.  It is interesting to note that 
the kinematic viscosity at 40 °C for all biodiesels 
is within the European (3.0-5.0 cSt) or ASTM 
(1.9-6.0 cSt) standard limit except canola 
biodiesel. Wide ranges of kinematic viscosity 
shown in figure 3 indicate the suitability of the 
experimental data for developing a robust ANN 
prediction model.   

  

Figure 3: Kinematic viscosity of biodiesel 
samples at different temperature 

Using the experimental data obtained in this 
study, the structure of the developed ANN model 
is shown in Figure 4. While developing the ANN 
model, 204 data sets obtained from experimental 
work in this study have been used.  Among those,  
70% of the data sets were used randomly to train 
the network, 15% of data sets were used 
validation and 15% of data were used as training 
data sets. Twenty three neurons representing input  

 
Figure 4: Optimised ANN for kinematic viscosity 

prediction   
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parameters including temperature and chemical properties shown in Table 1 where used as input parameters 
and corresponding kinematic viscosity shown in Figure 3 where used in single output neuron. The prediction 
accuracy of the model was observed for 23 to 46 neurons in the single hidden layer. It was found the 
prediction accuracy improved with the number neurons in the hidden layer.  The best result was found for 38 
neurons in the hidden layer. The computational time increased significantly along with the over fitting 
problem which eventually reduces the models effectiveness. The training was stopped after 27 iterations as 
shown in Figure 5 to avoid over fitting of the network. After stopping the training the software has identified 
the best ANN network at 21 iterations.  
 
The ability of the ANN model to predict kinematic viscosity has been verified by simulating it with unknown 
input variables. For this purpose experiments were conducted on a new biodiesel derived from waste cooking 
oil (WCOME) which was not used during the training of ANN model. The predicted kinematic viscosity of 
WCOME at temperatures from 20 to 100 °C were compared with the corresponding experimental values and 
shown in Figure 6. Actual and predicted data shown in Figure 6 indicates the good prediction ability of the 
developed ANN for predicting kinematic viscosity of biodiesel at different temperatures. In statistical 
analysis it was found that the absolute fraction of variance (R2) was close to unity 0.978, Root-Mean-Squared 
(RMS) error was 0.257 cSt and maximum average error percentage (MAEP) was 5.27%. This is a good 
correlation between the measured and predicted kinematic viscosity. The network has been trained very well 
and can be used to simulate biodiesel kinematic viscosity over a wide range of temperatures. However, the 
prediction accuracy of the model should be further improved by increasing the number and ranges of training 
data set. 

6. CONCLUSION 

The aim of this paper is to investigate the ability 
of using artificial neural networks (ANN) for 
prediction of biodiesel kinetic viscosity from its 
chemical compositions. A standard back 
propagation (BP) neural network model with LM 
algorithms was developed.  To train the network, 
biodiesels from ten different feedstocks have been 
characterized by using standard experimental 
methods and equipments. Important chemical 
properties and temperature were used as input 
variables to output the corresponding kinetic 
viscosity. The performance of the developed 
ANN prediction model was evaluated by 
prediction with the experimental results which 
were not used in the training process. The 
network produces the predicted results in good 
argument to the experimental ones. The overall 
results show that the networks can be used as an 
alternative way for predicting kinematic viscosity 
of biodiesel at different temperature conditions. 
The absolute fraction of variance (R2), Root-
Mean-Squared (RMS) and maximum average 
error percentage (MAEP) was values were found 
0.978, 0.257 cSt and 5.27% respectively which is 
within an acceptable range of accuracy.  The 
results of this study also show that ANN has 
ability to learn and generalize a wide range of 
experimental conditions. Therefore, the usage of 
ANNs may be recommended to optimize the 
chemical composition of biodiesels to optimize 
fuel quality for internal combustion engine 
application. However the network should be 
further improved by including additional robust 
data set during the training process.      

 

 
Figure 5: Training performance of ANN model 

 

 

Figure 6: Experimental and predicted kinematic 
viscosity of WCOME
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