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Abstract: Surface Bidirectional Reflectance Distribution Function (BRDF) correction of spectral data (Li 
et al., 2010) has important applications to time series based analysis and classification. However, it has been 
reasonably proposed that the BRDF information itself can be used directly in the time series applications for 
land cover mapping and climate change etc. To use such data it is important to understand the characteristics 
of BRDF and its variation over different cover and climate conditions and how they relate to well-understood 
variations in spectral data in terms of the land cover characteristics and changes. Many studies have 
suggested that BRDF is related to the characteristics of land cover types (Brown de Colstoun and Walthall, 
2006 and Jiao et al., 2011), especially to vegetation structure (height and cover) (Lovell and Graetz, 2002; Li 
et al., 2013) and also climate patterns. In this study, 10 years of MODIS BRDF data sets (MOD43A1) from 
2002 to 2011 have been used to conduct an analysis using time series data for land cover data products 
available in Australia. The data have been averaged over individual years to remove the seasonal patterns and 
variation for reasons which were outlined in Li et al. (2013) and are briefly discussed later in this paper. 
Using the “root mean square” (RMS, the distance of the shape function from Lambertian which is a measure 
of its asymmetry) as a BRDF shape indicator, with the inter-annual data series the study has found that: 

• The average RMS for three bands (red, near-infrared and shortwave infrared) for each year is well 
correlated with Normalized Difference Vegetation Index (NDVI) if it is separated by land cover classes. 
Correlation coefficients R2 range between 0.5-0.7. The RMS also varies significantly between land cover 
classes. 

• Inter-annual variation of RMS is small for typical vegetation classes, especially for classes with high 
vegetation cover. 

• If Normalized Difference RMS is used (called NDRMS, calculated using red and near-infrared bands and 
the same formula as NDVI), its relationship with NDVI is much stronger than that of RMS. Correlation 
coefficients R2 are close to 0.9 for most of the years. Each land cover class has well defined NDRMS 
patterns. The separation is clearer than for the RMS patterns. 

• NDRMS seems quite sensitive to climate change as indicated by NDVI but the relationship over the 10 
years in some classes is different from the overall relationship between classes averaged over all years. In 
vegetated classes, NDRMS has tended to increase in this way much more sensitively after the change from 
a long dry period to wet years, and most particularly after 2009. The sensitivity has apparently increased 
with class average NDVI. 

From the above, it has been concluded that: 

• Both RMS and NDRMS are able to differentiate land cover classes defined in the Australian Dynamic 
Land Cover Dataset (DLCD) series well. They both correlate well with spectral NDVI if the patterns are 
separated by land cover classes and averaged at least over individual years (removing intra-annual 
effects). 

• Both RMS and NDRMS can potentially be used as additional features to map land cover. However, 
NDRMS seems to be the more sensitive of the two. 

• However, confident and successful use of these features will need additional understanding of the sources 
of the variation and the information they bring compared with traditional spectral data. In particular, 
further studies are needed to understand the rising sensitivity in NDRMS compared with NDVI as cover 
and greenness increase and the previously reported (Li at al., 2013) questions concerning relative phases 
of intra-annual variation in NDRMS and RMS relative to NDVI. 
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1. INTRODUCTION 

The work reported here had its base in the practical choice for BRDF parameters to correct pre-MODIS 
Landsat data over the Australian continent. Studies of the MODIS BRDF parameters between 2001 and 2011 
(Li et al., 2013) showed that the inter-annual variation was small compared with intra-annual (seasonal) 
variation. Therefore, the default models were derived by averaging 46 “weekly” sets of parameters over the 
11 years. The variation between various sets of land cover classes was also much higher than the inter-annual 
variation indicating that spatial variation in the model was highly significant leading to the choice of leaving 
the definitions at the base 500m spatial resolution. However, while the BRDF shape and its patterns are 
important parameters for correcting the BRDF effect on satellite data (Li et al., 2010, 2012), they also 
provide potential independent features to use for land cover mapping. As additional information, Sandmeier 
and Deering (1999), Brown de Colstoun and Walthall (2006), Hill, et al. (2008) and Jiao et al. (2011) have 
found that BRDF shape features can improve classification accuracy for some sparse or open land cover 
classes that are dominated by surface scattering. However, the wider utilisation of this opportunity has been 
limited. 

To use such data it is important to understand the characteristics of BRDF and its variation over different 
cover and climate conditions and how they relate to well-understood variations in spectral data in terms of 
the land cover characteristics and changes. Many studies have found that there is a strong relationship 
between BRDF shape, vegetation structure and land cover types. For example, Lovell and Graetz (2002) 
found that there is a strong relationship between vegetation structure and BRDF parameters in Australia 
based on POLarization and Directionality of the Earth's Reflectance (POLDER) data. Li et al. (2013) also 
found that strong correlation exists between BRDF shape indicators (RMS/NDRMS) and vegetation structure 
using MODIS BRDF data. 

Following on from the work reported by Li et al. (2013), in this study, further analysis has been conducted 
using a 10-year (2002-2011) MODIS BRDF time series and a corresponding series of land cover maps 
developed in Australia. The objective is to establish relationships between the spectrally derived classes in 
terms of BRDF and to investigate whether MODIS BRDF parameters can be used as additional information 
to improve land cover classification accuracy in Australia. 

2. DATA AND METHODS 

2.1. Method 

Models for the surface bi-directional reflectance factor, ρs (θS, θV, φ) can be simplified and expressed using 
kernel functions as summarised in a convenient context by Schaaf et al. (2002) as: 
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In this expression, θS is solar zenith angle and θV is view zenith angle, φ is relative azimuth between the sun 
and view directions. Fiso is the weight for the isotropic contribution; Fvol and Fgeo are the weights for volume 
scattering and geometrical optical scattering contributions; and Kvol and Kgeo are volume scattering and 
geometrical optical scattering kernel functions. Kvol and Kgeo are functions of θS, θV and φ. B(θS,θV,φ,α1,α2) is 
the BRDF shape function where α1 is defined as Fvol/Fiso and α2 is defined as Fgeo/Fiso. The MODIS BRDF 
product is a time series of estimates for the coefficients (Fiso, Fvol and Fgeo). 

Several BRDF shape indicators have been developed and used for analysis (Jiao et al., 2011). We are 
assuming (based on simple models) that NDVI is sensitive to leaf area index (LAI), but not structure, and 
BRDF shape is sensitive to both LAI and structure. The shape of the red and near-infrared BRDF is observed 
to change differently with LAI and structure so there is a spectral effect in BRDF shape. Based on these 
assumption, in this study, a statistic called the root mean square (RMS) is used as the BRDF shape indicator 
to analyse anisotropy following the work done by Li et al. (2013). RMS between two shape functions (S1 and 
S2) is calculated as: 
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In this paper we have used the single shape statistic defined by taking S1 as the target BRDF shape, B, as 
expressed in Eq. (1) and the second (S2) as the Lambertian shape function (equal to 1.0). RMS then becomes 
the distance of the shape function from Lambertian which is a measure of its asymmetry. 
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Table 1. MODIS bands used 
in this study 

MODIS 

band 

Bandwidth 
(nanometers) 

Band 1 620-670 

Band 2 841-876 

Band 7 2105-2155 

To enhance the effect, an index (called NDRMS) which combines the red and near-infrared RMS was also 
used.  The calculation of NDRMS is similar to the NDVI, but uses RMS instead of surface reflectance and is 
expressed as: 

)3(
nirred

nirred
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Where RMSred and RMSnir are the RMS statistics for the red and near-infrared bands respectively. 

2.2. MODIS BRDF data and pre-processing 

The MODIS BRDF group provides 500m MODIS BRDF (MCD43A) model parameters (Fiso, Fvol and Fgeo) 
at overlapping 8-day “weekly” intervals based on 7 spectral bands. The data selected for this study were from 
2002 to 2011 (10 years) for the Australian region and each year has 46 time periods. The product (Schaaf et 
al., 2002) is the result of fitting a model to samples from 16 days of atmospherically corrected MODIS 
surface reflectance data but sampling at 8 days. A combination of the Ross Thick volume kernel and the Li-
sparse Reciprocal (Schaaf et al., 2002) geometric kernel models is used to approximate these data.  

However, there is considerable extraneous spatial and temporal variation in these data at their base 
resolution. It seems to be due to a range of factors, including mis-registration, limited available samples in 
terms of number and distribution, shade and occlusion effects in 
mountainous areas, sub-pixel cloud, BRDF variance and other residual 
effects. These seem to be amplified by instability in the model fitting 
which apparently can occur even when the quality flag is satisfactory. As 
a result of these factors, many outliers occur in the data that need to be 
removed before further analysis can be conducted. Many, but not all of 
the effects can be reduced by using only the best quality data as indicated 
in the MODIS quality flag metadata. These remain outliers are still need 
to be removed by statistical filtering. 

In this study, three MODIS bands are used to calculate RMS. They are 
MODIS band 1 (red), band 2 (near-infrared) and band 6 (shortwave 
infrared). To ensure greatest stability of the MODIS BRDF data, only the data using information from both 
Aqua and Terra have been used (i.e. data processed since 2002). Details of the MODIS bands used in this 
study and their spectral information are listed in Table 1. 

2.3. Land cover maps  

The time series of land cover maps for 2002-2011 were provided by Geoscience Australia. The first version 
of the base land cover map (The National Dynamic Land Cover Dataset, DLCD) was released in 2011 
(Lymburner, et al., 2011). The products classify Australian land cover into 33 categories, which conform to 
2007 International Standards Organization (ISO) Land Cover Standard (19144–2). They have been based on 
MODIS 250m Enhanced Vegetation Index (EVI) time series data. The land cover maps used in this study are 
the second version of the maps. It is an annual land cover series and is currently being evaluated. They 
comprise 10 yearly time series based land cover maps. Each map is produced using data from the preceding 
two-year period with a one-year overlap between maps. Three steps were used to generate the land cover 
maps. In the first step, noisy and invalid data points are removed from the time series. Secondly, a feature 
extraction algorithm converts time series into a set of 12 time series coefficients related to ground phenomena 
such as average greenness and plant phenology. In the last step, clustering processes based on a tailored 
support vector clustering algorithm are applied to subsets of the coefficients. The resultant clusters then form 
the basis for a further modeling process incorporating auxiliary data to generate the final DLCD. For further 
details, see Lymburner et al. (2011) and Tan et al. (2013).  

3. RESULTS AND DISCUSSION 

The Fiso parameters were extracted and the RMS statistics calculated for three bands using Eq. (2). The results 
were then averaged for each year. Figure 1 plots RMS (average red, near-infrared and shortwave infrared 
bands) and NDRMS inter-annual variation for eight typical land cover classes from 2002 to 2011.  

1905



Li et al., Characteristics of MODIS BRDF shape and its relationship with land cover classes 

 

Figure 1. Inter-annual variation for 8 typical land cover classes in 
Australia for (a) RMS and (b) NDRMS 
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Table 2. Correlation coefficients between NDVI and RMS/NDRMS for 10 
individual years. 
Where: RMS/NDRMS=a+bNDVI. R2 is correlation coefficient. 

Year 
RMS NDRMS 

a b R2 a b R2 

2002 121.1 0.0839 0.5065 -27.223 0.2604 0.923 

2003 115.63 0.0882 0.4945 -27.717 0.2504 0.8272 

2004 112.95 0.0931 0.5949 -24.285 0.2473 0.8681 

2005 115.98 0.0847 0.5915 -25.514 0.2594 0.8789 

2006 110.47 0.1013 0.6313 -26.066 0.2532 0.8433 

2007 111.42 0.0940 0.5865 -17.636 0.2387 0.8521 

2008 109.21 0.0993 0.6817 -14.166 0.2592 0.9032 

2009 105.35 0.1148 0.7109 -14.381 0.2634 0.9158 

2010 111.15 0.0965 0.6424 -13.759 0.2927 0.878 

2011 112.98 0.1023 0.6493 -14.095 0.3041 0.8796 

2002-2011 112.42 0.0964 0.6252 -20.132 0.2621 0.8868 

Inter-annual variation of RMS (Figure 1a) is 
relatively small, especially for vegetation 
classes with high cover. The sparse and 
scattered vegetation classes show more 
fluctuation. For these classes, background 
(e.g., grass, soil) change due to the seasonal 
climate variation (mainly annual rainfall in 
Australia) for each different year contributes 
to the RMS variation (Roderick et al., 2004). 
The NDRMS provides a different story. In 
general NDRMS also has little inter-annual 
variation in the first few years, but after 2007 
and particularly after 2009 it suddenly has an 
increasing trend (Figure 1b). The trend is not 
observed by RMS or NDVI. Since the climate 
patterns shifted after a long dry to wet in 
Australia over the same period, it would 
seem possible that NDRMS is more sensitive 
to climate change effects in land cover. 
There have certainly been significant 
changes in cover of grasses and some shrub 
growth in many parts of Australia in that 
period. However, at this time it is not yet 
clear if these data are displaying it. The 
inter-annual variation patterns of RMS and 
NDRMS for the DLCD land cover classes are 
similar to those of some older structural 
vegetation structure classes. Li et al. (2013) 
found that there was strong correlation 
between NDVI and RMS/NDRMS if the RMS 
and NDRMS patterns were separated by 
these vegetation structure classes. 
Consequently, the same analysis has been 
conducted in this study using the DLCD land 
cover classes. Additional analysis was also conducted for individual years to see whether the relationship also 
has inter-annual variation. 

 Figure 2 provides xy plots 
for NDVI and RMS for the 
period 2002-2011 for 33 land 
cover classes in Australia. 
The Figure shows that the 
relationship between RMS 
and NDVI is stable although 
there is clearly independent 
information in the two 
variables on a base of general 
correlation. The patterns are 
similar in the two plots and 
there is relatively small inter-
annual variation during the 
10-year period. 

For further analysis, the 
correlation coefficient has 
been calculated for each year 
and is listed in Table 2. Table 
2 shows that there is strong 
correlation between RMS and 
NDVI. Although the R2 
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Figure 2. The relationship between NDVI and RMS for 2002-
2011, separated into early and late as (a) 2002-2006 and (b) 
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Figure 3. The relationship between NDVI and NDRMS for 2002-2011, separated into early and late as  
(a) 2002-2006 and (b) 2007-2011 
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changed each year (ranging between 0.5 
and 0.7), the intercept (a) and slope (b) 
coefficients do not vary a great deal for 
the 10-year period. It seems that RMS is 
stable in regard to inter-annual 
variation. 

Since Figure 1 suggests that NDRMS is 
quite sensitive to climate change and 
has stronger inter-annual variation 
compared with NDVI and RMS, the 
same analysis was also conducted for 
NDRMS. The right half of Table 2 
shows the statistical results for NDVI vs 
NDRMS. The results show that the 
relationships between NDVI and 
NDRMS are much stronger than those of 
NDVI and RMS. The correlation 
coefficients R2 range between 0.85 and 
0.92. Both intercept (a) and slope (b) 
coefficients vary significantly between 
the first 5 years and the last five years, 
particularly in 2010 and 2011. 

Figure 3 provides the xy plot for NDVI 
and NDRMS. There are some negative 
NDRMS values, all of which are from 
inland water bodies where NDRMS is 
either negative or a very small number. 
It is possible that NDRMS could be used 
as an additional parameter to improve 
water body mapping. Compared with 
Figures 3a and 3b, and as indicated 
numerically in Table 2, NDRMS 
increases significantly after 2007 and 
both the slope and the intercept of the 
relationship with NDVI between classes has increased over the last 5 years. 

Comparing Figure 3 with Figure 2, it seems that there is strong clustering in Figure 3 when NDVI values are 
between 0.15 to 0.25, but this does not appear in Figure 2, nor in the other NDVI range in Figure 3. Areas of 
low NDVI are mainly stable areas with little vegetation such as interior and semi-arid areas. But higher NDVI 
areas are likely to change much more - especially in green grass background. NDRMS is also expected to 
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Figure 4. XY plot for 10 years average of NDVI and RMS/NDRMS 
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change with structure. That is the potential difference of the NDRMS relationship of Table 2. But so far, we 
do not have direct validation and it remains to be done. 

If RMS and NDRMS are averaged 
over the full 10 years, the overall 
relationship between 
RMS/NDRMS is obtained as 
shown in Figure 4 and last row of 
Table 2. The Figure and the table 
show that the overall relationship 
is persistent, with the R2 being 
0.6252 and 0.8868 for RMS and 
NDRMS, respectively. The 
constants (a) and (b) are similar to 
those of the individual years for 
RMS, but for NDRMS, (a) and (b) 
are the average of first 5 and the 
later five years. They are 
obviously different from the last 
five years. The plot also shows a 
non-linear increase in sensitivity 
over NDVI as the cover of the 
class increases. This is consistent with the results seen in Table 2. 

4. CONCLUSIONS 

From the above analysis, we have found that BRDF spectral shape anisotropy (as expressed by RMS and 
NDRMS) is well correlated with NDVI at a yearly (inter-annual) scale, and BRDF shape is significantly 
different between land cover classes suggesting it provides useful information for discriminating land covers. 
The correlation between NDVI and NDRMS is stronger than that between NDVI and RMS. NDRMS has also 
significantly increased after 2009 but it is not yet confirmed that the trend is related functionally to the land 
cover response to inter-annual climate change. NDRMS also seems to be quite sensitive to water bodies and 
could possibly be used to distinguish their presence on the land surface. 

NDRMS as a function of NDVI apparently changes in sensitivity to changing cover over time in vegetation 
classes. However, this still needs to be independently related to vegetation growth and changes in structure or 
dominant vegetation types. This must occur if it is to be used with confidence for land cover mapping. In 
addition, different behaviours of the statistics at the seasonal or intra-annual scale (as reported by Li et al., 
2013) are being investigated. Intra-annual spectral data (e.g. NDVI and Albedo) display seasonal cycles that 
are well understood in terms of climate forcing of plant growth, evaporation and wetting/drying phases. But 
at the present time, while the RMS and NDRMS data also show seasonal relationships they have phase shifts 
that also need independent identification to be used confidently in seasonal monitoring. 

Our conclusions at this stage of the investigation are: 

I. Both RMS and NDRMS separate different land cover classes of the Australian DLCD series well. 
They also both correlate well with spectral NDVI if the patterns are separated by land cover classes 
and averaged at least over individual years (removing intra-annual effects). 

II. Both RMS and NDRMS can potentially be used as additional features to map land cover. However, 
NDRMS seems to be the more sensitive of the two. 

III. However, confident and successful use of these features will need additional understanding of the 
sources of the variation and the information they bring compared with traditional spectral data. In 
particular, further studies are needed to understand the rising sensitivity in NDRMS compared with 
NDVI as cover and greenness increase in some vegetated classes, and the previously reported (Li at 
al., 2013) questions concerning relative phases of intra-annual variation in NDRMS and RMS 
relative to NDVI. 
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