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Abstract: Flood damage can be minimised by ensuring optimum capacity to drainage structures. An 
underdesign of these structures increases flood damage cost whereas an overdesign incurs unnecessary 
expenses. The optimum design of water infrastructures depends largely on reliable estimation of design 
floods which is a flood discharge associated with a given annual exceedance probability. For design flood 
estimation, the most direct method is flood frequency analysis which requires long period of recorded 
streamflow data at the site of interest. This is not a feasible option at many locations due to absence or 
limitation of streamflow records; hence regional flood estimation methods are preferred. Regional flood 
frequency analysis (RFFA) involves transfer of flood characteristics from gauged to ungauged catchments. 
The RFFA methods are widely used in practice.  
 
In the past, different RFFA methods have been proposed for Australia, which are based on linear models 
such as Probabilistic Rational Method (PRM) and index flood method. More recently, regression-based 
methods have been investigated for Australia, which are also log-linear models. There have been successful 
application of non-linear models like Artificial Neural Networks (ANN), Gene Expression Programming 
(GEP) and Fuzzy based methods in hydrology in some other parts of the world. However, there has not been 
any notable application of these methods in RFFA study in Australia. This paper focuses on the application 
of the ANN and GEP to regional flood estimation problems in Australia. The GEP approach used in this 
study provides an integrated mechanism for the identification of the optimum hydrological regions for RFFA 
study in eastern Australia. In the preliminary study, optimum regions were obtained based on geographic and 
state boundaries, climatic conditions and catchment attributes. The proposed approaches were applied to 452 
stations in the eastern Australia. Results depict that the GEP and ANN approach have a much better 
generalization capability of RFFA problems. An independent test has shown that the ANN based model 
provides more accurate flood quantile estimates than the GEP. Overall, the best ANN-based RFFA model is 
achieved when all the data set of 452 catchments are combined together to form one region, which gives an 
ANN-based RFFA model with median relative error of 35% to 44% and median ratios (of predicted and 
observed values) of 0.99 to 1.14.  
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1. INTRODUCTION 

Estimation of large to extreme floods is a necessity in the design of major water infrastructures such as dam 
spillways, large weirs and major bridges. Lack of long records for reliable estimation of design flood peaks has 
always been a concern for hydrologist and has prompted the development of regional flood frequency analysis 
(RFFA) methods. RFFA techniques enable the estimation of design floods at ungauged catchments. RFFA 
enhances the flow statistics at sites where streamflow records are short (Shabri and Jemain, 2013). 
 
Different regional flood estimation methods were proposed for different parts of Australia in its national guide 
called Australian Rainfall and Runoff (ARR). Among these, various forms of the rational method and the index 
flood method are the most common. However, these methods have not been updated in Australia since 1987. 
Because of changing climatic conditions, availability of additional streamflow data and improvements in 
regional flood estimation methods in the past decade, there is a need to look for new regional flood estimation 
techniques for Australia. Some of the recent developments in regional flood estimation methods in Australia 
include L moments based index flood method, various forms of regression techniques (Bates et al., 1998; 
Rahman et al., 1999; Rahman, 2005; Haddad et al., 2012). All of these techniques are based on the assumption 
of linear models (either in original data space or in log-log space), an assumption that may not be satisfied in 
many cases.  
 
Increased computing power has created new opportunities for hydrologists for the solution of complex 
problems. For example, there have been applications of artificial intelligence based methods such as Artificial 
Neural Networks (ANN) and Gene Expression Programming (GEP) in hydrology, particularly in streamflow 
forecasting problems. ANN and GEP are computational models that help in input output mapping.  Muttiah et 
al. (1997), Hall and Minns (1998), and Dawson et al. (2006) are among others who have successfully applied 
ANN in hydrology. There has been limited application of ANN and GEP in RFFA problems in Australia. 
Application of ANN and GEP may help developing improved regional flood estimation techniques for 
Australia. Unlike regression based approach, the ANN and GEP do not impose any fixed model structure on 
the data rather the data itself identifies the model form through use of artificial intelligence.  
 
2. ANN AND GEP-BASED MODELS IN HYDROLOGY 
 
Most hydrologic processes are highly nonlinear, with a higher degree of spatial and temporal variability. The 
uncertainty in parameter estimates makes them more complicated. ANN is a parallel system and is capable of 
resolving paradigms that linear computing cannot solve. The ANN has been widely adopted for a range of 
hydrological problems such as rainfall-runoff modeling, streamflow forecasting and water quality modeling 
(e.g. Govindaraju, 2000; Chokmani et al., 2008; Turan and Yurdusev, 2009). The Task Committee on 
Application of ANN in Hydrology by ASCE (2000) stated that ANN should be classified as empirical models, 
which treat hydrologic systems (such as a watershed) as a black-box and attempt to find a relationship between 
historical inputs (e.g. rainfall and streamflow) and outputs (e.g. catchment runoff measured at a stream gauge). 
There have been relatively few applications of ANN to RFFA to estimate flood quantiles in ungauged 
catchments. For example, Dawson et al. (2006) applied ANN to develop a model for index flood using data 
from 850 UK catchments and found that ANN provided more accurate flood quantile estimates than the QRT. 
They pointed out that ANN are heavily data dependent and cannot explicitly account for physical processes, 
reducing confidence in model predictions. Other ANN based RFFA studies include Muttiah et al. (1997) who 
used a large data set from the US to predict 2 year peak flood.  In Australia, Daniell (1991) adopted ANN to 14 
catchments in Australian Capital Territory (ACT) to develop a RFFA model; however, due to limited data set 
the method could not produce any meaningful prediction. Recently, in Australia Aziz et al. (2010, 2011, 2012 
and 2013) have applied ANN-based RFFA methods to eastern Australia and found that ANN-based RFFA 
methods can provide quite accurate regional flood estimates. The main focus of this paper is to compare the 
ANN-based RFFA methods with Gene expression programming (GEP).  
 
The GEP is a computing method that is capable of generating a ‘transparent’ and structured representation of 
the system. This has been applied with success in water resource engineering (Rabunal et al. 2007; Guven et al. 
2008). This has drawn the hydrologists in investigating the use of GP in estimating the river flow data and 
runoff estimate model (Seckin and Guven, 2012; Guven and Talu, 2010). The most relevant study to RFFA has 
been conducted by Seckin and Guven (2012). They applied GEP for the estimation of peak flood discharges at 
ungauged sites across Turkey. The study covered 543 ungauged sites across Turkey. Drainage area, elevation, 
latitude, longitude, and return period were used as the inputs while the peak flood discharge was the output.  
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3. WORKING STRUCTURE OF ANN AND GEP 

The ANN method adopted in this study is based on the structure of the multi-layer perception (MLP), which 
has been widely used in hydrological modelling (Shamseldin, 1997). A network of interconnected neurons 
linked by connection pathways form the MLP structure as shown in Figure 1. In this study, the adopted ANN 
model has three layers of neurons or nodes: an input layer, a hidden layer and an output layer. The layers of 
neuron communicate via a weighted connection network. There are four types of weighted connections: 
feedforward, feedback, lateral, and time-delayed connections.  Each neuron has a number of inputs and a 
number of outputs (leading to the subsequent layer or out of the network). In Figure 1 neurons are shown by 
circles and lines representing the connections. The computation required at each neuron is simple where each 
input is multiplied by a connection parameter known as weight, and combined (usually with certain bias) to 
produce a single value. A transfer function is used to operate this value. This functional form helps to 
determine the response of a node to the total input signal it receives. The functional form used in this study is 
sigmoid which is a bounded, monotonic, non-decreasing function that provides a graded and nonlinear 
response. This function enables a network to map any nonlinear process.  Typically the hyperbolic tangent 
sigmoid function used in this study is: 
 

f (x) = 1− e− x

1+ e−x                          (1)  

                                                                                             

 
Figure 1. Configuration of a feedforward three-layered ANN. 

GEP automatically generates algorithms and expressions for the solution of a problem, which are coded as a 
tree structure with its leaves (terminals) and nodes (functions). The generated candidates (programs) are 
evaluated against a “fitness function” and the candidates with higher performance are then modified and re-
evaluated. This modification evaluation cycle is repeated until an optimum solution is achieved. Chromosomes 
and the expression trees (ETs) are two important components of the GEP. The ETs are the expression of the 
genetic information encoded in the chromosomes. To predict a flood quantile, a set of independent variables 
(predictor variables) is to be used in the GEP. A set of functions (e.g., ex and sin(x)) and arithmetic operations 
(+, -, /, *) are used. The terminals and the functions form the junctions in the tree of a program. The GEP gene 
contains head and a tail. The head contains the functions and the terminals are represented by the symbols 
while tail only contains the terminals. For each problem the length of the head of the gene h is selected whereas 
tail’s length is a function of length of the gene’s head. 
 
4. STUDY AREA AND DATA  

This study focuses on the eastern states of Australia. This includes the states of New South Wales (NSW), 
Victoria (VIC), Queensland (QLD), and Tasmania (TAS). This part of Australia is selected because of a rich 
spatial and temporal data of gauged catchments in this region. This data is more comprehensive than other parts 
of Australia. Filling of gaps, checking for trends, outliers and rating curve error in streamflow as detailed in 
Haddad et al., (2010), Rahman et al. (2009) and Rahman et al. (2012) were adopted to prepare the streamflow 
data. Here, annual maximum flood series data are used. A total of 452 stations were finally selected for this 
study (Figure 2), which include data from four states: NSW (96) VIC (131), QLD (172) and TAS (53). The 
catchment sizes of the selected 452 stations range from 1.3 km2 to 1900 km2 with the median value of 256 km2. 
The annual maximum flood record lengths of the selected stations range from 25 to 75 years (mean: 33 years). 
 
5. METHOD 

The available data set of 452 stations was divided into 80% (362 stations) for training, 20% (90 stations) for 
testing. The training and testing data sets were selected randomly out of the total 452 stations. Both ANN and 
GEP based RFFA models were developed to predict the 2, 5, 10, 20, 50 and 100 years ARI floods. Two best 
performing predictor variables (Catchment area (A) and design rainfall intensity (Itc,ARI) were selected for 
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prediction equation (Aziz et al., 2010). All the gauging stations (452) from eastern states of Australia are 
combined in this study to form one region (Aziz et al., 2011, 2013). 
 
 

 
Figure 2. Location of study catchments (Red colour shows the test catchments).  

 
In case of ANN, a feedforward ANN consisting of three layers (input, hidden and output layers) was used with 
the training algorithm known as ‘backpropagation of error’. Three hidden-layered neural networks were 
selected with 7, 3 and 1 neurons to each of these three layers. Two inputs (A, Itc_ARI ) were used in one input 
layer  and one output layer with one output (Qpred). The transfer function used for the hidden layers and the 
output layer was hyperbolic tangent sigmoid function. Transfer functions calculate a layer's output from its net 
input. Each predictor and predictand was standardized to the range of [0.05, 0.95], such that extreme flood 
events which exceeded the range of the training data set could be modelled between the boundaries [0, 1] 
during testing. A learning rate of 0.05 was used together with a momentum constant of 0.95. 
 
In order to obtain the best GEP model, the MSE values between the observed and predicted flood quantiles 
were calculated and the training was undertaken to minimise this error. Mean squared error (MSE) was taken as 
fitness function. Lavenberg-Marquardt method was used as the training algorithm to minimise the mean 
squared error. MATLAB and GenXProTools were used for the ANN and GEP analysis respectively. In order to 
develop the combined model in GenXProTools®, the parameter settings as shown in Table 1 were used. 
 
Three statistical measures were used for model evaluation as discussed below. 

• Coefficient of efficiency 
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• Ratio between predicted and observed flood events 
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Where Qpred is the flood quantile estimate from the GEP, ANN-based or QRT model and Qobs is the at-site 
flood frequency estimate obtained from LP3 distribution using a Bayesian parameter fitting procedure 
(Kuczera, 1999).  

Table 1. Parameters used in GEP model 
Parameters Description Amount 

P1 Chromosomes 20 
P2 No of genes 5 
P3 Head size 6 
P4 Tail size 7 
P5 Fitness function error type MSE 
P6 Linking function Subtraction 
P7 Mutation rate 0.044 
P8 Function set +,-,*,/,x2, x3, sqrt, Exp, Ln, Sin, Cos, 3Rt, Atan, Pow, Log, Log2 
P9 Inversion rate 0.1 
P10 Gene recombination rate 0.1 
P10 One point recombination rate 0.3 
P10 Two point recombination rate 0.1 
P10 Gene Transposition rate 0.1 
P10 Data type Floating-Type 

 

6. RESULTS 

Table 2 shows the median ratio (r) values for the ANN, GEP and QRT based RFFA models. The results based 
on ANN and GEP are comparable and closer to 1. For higher ARIs GEP provides better results than ANN. 
ANN based model performs better for smaller ARIs than a GEP based RFFA model whereas, GEP shows much 
better values of r for higher ARIs e.g. Q50 and Q100. When median r values of QRT are compared with ANN 
and GEP based models, two non linear models outperform except for Q5. Overall, in terms of r values GEP 
based RFFA model performs well as compared to other two models. 

 
Table 2. Median Qpred/Qobs ratio values for ANN, GEP and QRT 

Quantiles Qpred/Qobs  ratio (median) 
 ANN GEP QRT 

Q2 1.04 1.07 1.15 
Q5 0.99 1.10 1.06 
Q10 1.02 1.04 1.35 
Q20 1.04 1.02 1.13 
Q50 1.14 1.05 1.19 
Q100 1.10 1.02 1.28 

Overall 1.06 1.05 1.19 

 
 
The CE values for these models (ANN and GEP) are also compared with each other and also with QRT based 
RFFA technique as shown in Table 3. ANN based method provides CE value in the range of 0.52 (Q100) to 0.73 
(Q2) which is quite reasonable. In the case of GEP the values of CE ranges from 0.51(Q2) to 0.68 (Q20). In fact, 
the CE values for GEP are better for higher ARIs; however, the ANN based models provide better results for 
smaller ARIs. The CE values for the GEP and ANN are close enough to each other, but a significant difference 
can be seen for CE values. Figure 3 shows the plot of observed and predicted flood quantiles for 20 years ARI 
from the ANN based model, which shows quite a good fit for the training and validation data sets. Similar 
results were found for other ARIs for ANN and GEP based models. This was observed that for majority of the 
cases the model prediction matches very well with the observed quantiles, but in few cases there were notable 
differences, which are expected in RFFA for Australia (e.g. Haddad and Rahman, 2012).  
 

Table 3. Coefficient of efficiency (CE) values for ANN, ANFIS, GEP and QRT 
 
 
 
 
 
 

 
 

 

Quantiles Qpred/Qobs  CE (median) 
 ANN GEP QRT 

Q2 0.73 0.51 0.35 
Q5 0.61 0.67 0.37 
Q10 0.63 0.56 0.30 
Q20 0.71 0.6 0.37 
Q50 0.68 0.63 -8.42 
Q100 0.52 0.67 0.38 

Overall 0.65 0.62 -1.11 
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Table 4 shows the median RE values for the RFFA models based on GEP, ANN and QRT. When comparing 
the results of GEP and ANN, ANN based RFFA technique provides median RE value in the range of 35% to 
44%. On the other hand, the median RE values for GEP based RFFA model are in the range of 37% to 45%, 
which are quite close to ANN based models. But, in this case of median RE values, the GEP outperforms the 
ANN for higher ARIs e.g. Q50 (37%) and Q100 (44%). On the contrary, the ANN performs well in the case of 
smaller ARIs e.g.  median RE values of 37% for Q2 and 35% for Q20. The QRT provides the results in the range 
of 42% (Q20) to 65% (Q2). For all the ARIs, non-linear techniques outperform the linear one. But overall when 
RE value is considered, the ANN based model performs better than other two models as shown in Figure 4. 

 
 

Table 4. Median relative error values (%) for ANN, GEP and QRT 
Quantiles Qpred/Qobs  RE (median) 

 ANN GEP QRT 
Q2 37.56 45.87 65.38 
Q5 40.39 44.95 45.35 
Q10 44.63 42.08 57.62 
Q20 35.62 41.53 42.64 
Q50 39.09 37.87 48.71 
Q100 44.53 44.47 51.72 

Overall 40.3 42.8 51.9 

 
 

 
Figure 3. Plot of observed (target) and predicted (output)          Figure 4. Comparison of RE values between           
quantiles for Q20 (ANN based model)                                        ANN, GEP and QRT based RFFA models 

7. CONCLUSION 
 
This paper compares three RFFA methods, two non-linear (ANN and GEP) and one linear (QRT). It has been 
found that the ANN and GEP provide quite accurate flood estimation in eastern Australia. It has been found 
that that a backpropagation feedforward ANN consisting of three layers is the best performing model when two 
predictor variables (catchment area and design rainfall intensity) are used. This model shows a median relative 
error value in the range of 35% to 44%, median ratio of predicted and observed flood quantiles in the range of 
0.99 to 1.14 and coefficient of efficiency values in the range of 0.52 to 0.73. The ANN and GEP methods can 
be extended to other Australian states. 
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