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Abstract: Data assimilation (DA) methods have been widely used to improve model state estimation by merg-
ing model outputs with observations. Traditionally, studies have focused on updating model state variables but
recent studies have augmented model parameters alongside model state variables to improve the estimation
procedure. The updated model ensemble members represent a compromised estimation between prediction
and observation. The compromise, which is usually in objective space subject to agreement between obser-
vation and model predictions, is important. However, few studies have actually employed DA procedures to
investigate the updated members in decision space, through examination of the temporal changes of model
states and parameters. Usually, the model states and parameters evolve/change: (i) subject to changes in ob-
servation, (ii) to account for the varied uncertainties in different land surface conditions, and (iii) due to their
intricate connection with hydrologic conditions which evolve across assimilation time periods. Moreover, the
update procedure in most DA methods is controlled predominantly by matchings between observation and
model predictions with limited impact from decision space through model state variables and parameters. As
a result, DA procedures are needed to tightly link the compromise in objective space to decision space, with
the capability to examine the temporal changes of model states and parameters.

To address these challenges, this study has employed the Evolutionary Data Assimilation (EDA) method in a
joint state-parameter estimation to assimilate: (i) synthetic daily soil moisture into the Joint UK Land Envi-
ronment Simulator (JULES), and (ii) hourly streamflow into the Hydrologiska Byråns Vattenbalansavdelning
(HBV) model. The EDA is a relatively new formulation of the multi-objective evolutionary strategy for the
purpose of data assimilation. The EDA was applied to illustrate its capability to both retrieve model parameter
values and to improve estimation of soil moisture and streamflow in a two-step procedure.

In the soil moisture assimilation, the first step involved the generation of initialization model state and pa-
rameter values as the original ‘truth’ where they were applied into the JULES model to simulate surface soil
moisture, representing the synthetic soil moisture. The second step assimilated the synthetic soil moisture
into a perturbed version of the JULES model to retrieve the original model state and parameter values. The
updated model states and parameter values were compared to the original ‘truth’ to show that the EDA can
both retrieve the original ‘truth’ parameter values and the soil moisture states. The soil moisture assimilation
was illustrated for the Yanco region in New South Wales, Australia from January to December 2010.

In the streamflow assimilation, the original ‘truth’ values of the HBV model were obtained from two inde-
pendent studies generated using: (i) the Multistart weight-adaptive recursive parameter estimation, and (ii) the
Shuffled Complex Evolution. The EDA was applied to assimilate hourly streamflow into the HBV model to
retrieve the calibrated model state and parameter values. The streamflow assimilation was illustrated for the
Bellebeek catchment in Belgium from August 2006 to July 2007. The input data for the HBV model and data
sets in the Bellebeek catchment were provided by the authors of the two independent studies.

The synthetic soil moisture were compared to the EDA updated soil moisture in the soil moisture assimilation,
whereas the observation streamflow were compared to the EDA updated streamflow. The findings show a high
estimation accuracy of the EDA for soil moisture and streamflow based on the evaluation measures and the two
independent studies. Moreover, the updated ensemble of model states and parameter values were evaluated
across the assimilation time steps showing the level of convergence for model state variables and parameters.
The evaluation of the temporal evolution of updated ensemble members in decision space demonstrates the
capability of the EDA to retrieve model state variables and parameters. Thus, the key potential of the EDA lies
in the evaluation of updated members for model state and parameter linkages in decision space.
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1 INTRODUCTION

Hydrologic data assimilation (DA) has increasingly focused on state estimation [Xie and Zhang, 2010; Cam-
porese et al., 2010], with relatively few examples where the model parameters have been augmented alongside
model state variables [Vrugt et al., 2005; Moradkhani and Hsu, 2005]. While the focus has been to improve the
overall compromise between observation and model estimation, very few studies have actually employed DA
procedures to examine the temporal changes for model states and parameters. Typically, the model states and
parameters evolve across data assimilation time periods because they are intricately linked to the hydrological
conditions of the area under study. Moreover, the temporal changes in model states and parameters are neces-
sary to account for the varied uncertainties in different land surface conditions across different time periods.
The lack of evaluation of the temporal changes for model state variables and parameters is partly because the
updated ensemble members generated by most DA methods are not usually adjusted for model state variables
and parameters. This is because in most DA methods, the updated ensemble members are generated subject
to an update procedure which is predominantly a compromise in objective space (subject to observation and
prediction) with limited control from decision space (that is, model states and parameters).

The problem of temporal changes for model states and parameters is addressed in this study through the evo-
lutionary data assimilation (EDA) procedure. The EDA is a fairly new DA methodology that employs an
advanced analytical evolutionary strategy to merge and account for uncertainties in model prediction and ob-
servation data. Evolutionary algorithms have been applied in several hydrological studies including [Dumedah
et al., 2012; Ines and Mohanty, 2009; Chemin and Honda, 2006], and the EDA has been applied in assimi-
lating soil moisture [Dumedah and Coulibaly, 2012a; Dumedah et al., 2011], and streamflow in gauged and
ungauged catchments [Dumedah, 2012; Dumedah and Coulibaly, 2012b].

This study assesses the capability of the EDA to reproduce known model parameters and states for a land
surface model, and a conceptual hydrologic model. Specifically, the EDA estimates model states and pa-
rameters in: (i) soil moisture assimilation for the Joint UK Land Environment Simulator (JULES) model,
and (ii) streamflow assimilation for the Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The soil
moisture assimilation in JULES employed a synthetic study to examine the capability of the EDA to retrieve
original ‘truth’ values for model parameters and states. The study is demonstrated for the Yanco area in New
South Wales, Australia using synthetic soil moisture data from January to December 2010. The streamflow
assimilation in HBV compares the retrieved values for model states and parameters to corresponding values
obtained from independent studies in Ferket et al. [2010], and Pauwels and De Lannoy [2009]. The streamflow
assimilation is illustrated for the Bellebeek catchment in Belgium from August 2006 to July 2007.

2 MATERIALS AND METHODS

2.1 The evolutionary data assimilation - EDA

The EDA is a formulation of evolutionary algorithm into a data assimilation procedure [Dumedah and Walker,
2013; Dumedah and Coulibaly, 2012a]. Evolutionary algorithms are population based search procedure using
the concept of biological evolution and natural selection to address complex problems. In evolutionary strategy,
a population of candidate members (or solutions) are allowed to compete based on evaluation conditions, where
the high performing members are selected and varied to reproduce new members.

Figure 1: A simplified procedure of the evolutionary
data assimilation, adapted from Dumedah [2012].

The implementation of the EDA used in this study fol-
lows Dumedah and Walker [2013]; Dumedah [2012]. In
the EDA procedure (Figure 1), a population of model
predictions are generated by perturbing model param-
eters, states, and input forcing data. A corresponding
number of observation ensemble members are generated
based on the observation data and its associated uncer-
tainty. The ensemble predictions and observations are
used at the evaluation stage to determine the fitness for
each member based on: the absolute difference, and the
cost function [Dumedah and Walker, 2013]. The fitter
members with the optimal compromise between the sim-
ulated model output and the observation, are selected and
varied to reproduce new members for the population. This complete cycle comprising the generation of popu-
lation members, evaluation, selection, and reproduction of new members constitutes one cycle of a generation.
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The population members are evolved across several generations to determine the final evolved members which
represent the updated members. For each assimilation time step, the evolution is repeated to determine the
updated members.

2.2 Description of the Yanco area, the JULES model, data sets, and the assimilation setup

The Yanco area is a 60×60-km land area located in the south east Australia with latitude ranging from 34.5
to 35.2oS, and longitude between 145.0 and 146.8oE. The landscape is predominantly flat with sandy loam
textured soils along with scattered clays and sand. The vegetation is mainly rain-fed cropping/pasture with
scattered trees and grassland, with some irrigated crops in the north west.

The JULES model is a widely used tiled model of sub-grid heterogeneity which simulates water and energy
fluxes between a vertical profile of soil layers, vegetation, and the atmosphere [Best et al., 2011]. The JULES
model uses input forcing data, surface land cover data, soil properties data, and values for prognostic variables.
To set up the JULES model for the Yanco area, the soil properties data were derived from the Digital Atlas
of Australian Soils [McKenzie et al., 2000], obtained through the Australian Soil Resource Information Sys-
tem. The soil data include information on soil texture class, along with clay content, bulk density, saturated
hydraulic conductivity, and soil layer thickness for horizons A and B [McKenzie et al., 2000]. The informa-
tion for surface land cover was obtained from the Australian National Dynamic Land Cover Dataset [Lym-
burner et al., 2011], derived from the 250-m bands of the Moderate Resolution Imaging Spectroradiometer
(MODIS). The input forcing data were obtained from the Australian Community Climate Earth-System Sim-
ulator (ACCESS-A) providing an hourly data with 12-km spatial resolution [Bureau of Meteorology, 2010].
The ACCESS-A precipitation data set was bias corrected using a 5-km gridded rain gauge precipitation data
from the Australian Water Availability Project [Jones et al., 2009].

To set up the synthetic experiment, initial model states and parameters were randomly generated using the
lower and upper bounds of the model state variables and parameters as a constraint. These model states and
parameter values (representing the original ‘truth’ values) were then applied into the JULES model to generate
synthetic soil moisture truth data from January to December 2010. The EDA was then applied with time-
variant model state and parameter values using the synthetic truth soil moisture values as observation data
in a daily time step assimilation into the JULES model. In the EDA run, the initial population of ensemble
members was generated using the lower and upper bounds of the model state variables and parameters. The
variance of an ensemble soil moisture was used as the observation uncertainty, and the time-variant model
error was estimated from the population of ensemble members. The assimilation was run with an ensemble
size of 200 at a daily time step from January to December 2010. In the EDA approach, a subset of 20 members
was selected from the entire 200 members for each assimilation time step, to represent the updated ensemble
members. Note that the updated members comprise model states and parameter values, with their associated
estimates of soil moisture. The updated soil moisture from the EDA was compared to the synthetic soil
moisture observation, and the updated model state and parameter values from the EDA were compared to the
original truth values in the results section in 3.1.

2.3 Description of the Bellebeek catchment, the HBV model, data sets, and the assimilation setup

The Bellebeek is a catchment located in Belgium with a drainage area of about 86.36-km2 at a latitude of
50.6oN , and a longitude of 4.1oE. The landscape is varied with elevation ranging from 10 to 110-m, along
with mainly loam (about 75%) textured soils, and land use is predominantly agriculture (about 63%) with
scattered pasture (about 22%).

The HBV model is a conceptual rainfall-runoff model with input forcing data including precipitation, air
temperature and evapotranspiration. The HBV model was used to simulate the streamflow in the Bellebeek
catchment. The HBV model has been calibrated for streamflow at an hourly time step from 1 August 2006
through 31 July 2007 for the Bellebeek catchment by Ferket et al. [2010], and Pauwels and De Lannoy [2009]
using two calibration methods: the Multistart weight-adaptive recursive parameter estimation (MWARPE)
method, and the Shuffled Complex Evolution (SCE-UA).

In the EDA, the HBV model and its model parameter and state intervals were applied to assimilate streamflow
at an hourly time step. An ensemble size of 400 was used with a subset of 20 members selected as the updated
ensemble for each assimilation time step, as with the JULES experiment. The larger ensemble size of 400
was used because the computational demand in the HBV was lower compared to the JULES model. The EDA
outputs including the estimated values for model states and parameters and the updated flow estimates are
compared to the outputs from Ferket et al. [2010], and Pauwels and De Lannoy [2009].
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3 RESULTS AND DISCUSSIONS

3.1 Retrieval of synthetic model state variables and parameters in the JULES model

The comparison between the synthetic truth and the EDA estimated soil moisture is shown in Figure 2.

Figure 2: Comparison between the synthetic truth soil
moisture and the estimated soil moisture using the EDA

This result shows a high agreement between the synthetic
truth and the estimated soil moisture values, as evidenced
by the accurate values for evaluation measures including
root mean square error (RMSE) and coefficient of deter-
mination (R2).

The temporal changes for model states and parameters
across assimilation time steps as compared to the original
truth values is shown in Figure 3. The estimated values
overlap with the original truth values across all model
state variables and parameters, indicating that for each
assimilation time step the original truth values were suc-
cessfully retrieved as a member of the updated ensemble
members.

To examine the probability distribution of the estimated
values, a plot of the probability score and deviation from
the mean is shown in Figure 4. The probability distri-
butions show the deviation of the original truth values
in relation to the mean and its corresponding probability
score. The original truth values are not all located closest to the mean, but the spread of the estimated values
covers all the original truth values. It is noted that the probability score values do not indicate the quality of
the estimated values, because in the EDA approach each updated ensemble member is equally competitive to
providing a unique compromise between the simulated output and the observation.

Figure 3: Comparison between the ‘truth’ model state and parameter values and those estimated from the EDA. The
red-coloured symbol (i.e., triangle) represents the original synthetic values, and the dark-coloured symbol (i.e., circle)
represents the EDA values. Although the synthetic parameter values are plotted to be the same across assimilation time
steps, they in fact are applicable only to the initial time step and then propagated across subsequent time steps.

These results illustrate the capability of the EDA approach to explore the changes in model state and param-
eter values in response to observation data. The ensemble model state and parameter values provide crucial
information on the distribution (e.g. whether clustered, scattered) of parameter values for further evaluation
with the potential to explore model structure, identify model weaknesses, and to study the representativeness

2879



G. Dumedah and J.P. Walker, Joint model state-parameter retrieval

of physical processes in models. Based on the clustering pattern, it is noted that model state variables and
parameters with a high degree of clustering are sensitive, whereas values with low levels of clustering show
in-sensitive model state variables and parameters.

Figure 4: Probability distributions for the updated ensemble values (presented in dark-coloured dots) for model state
variables and parameters in comparison to the original truth values (shown in red-coloured lines).

3.2 Retrieval of calibrated model state variables and parameters in the HBV model

The comparison of the observed streamflow to the EDA estimate, and to the calibrated estimate using
MWARPE and SCE-UA from Ferket et al. [2010], and Pauwels and De Lannoy [2009] are shown in Fig-
ure 5. The high agreement between the observation and the EDA estimated streamflow is supported by the
accurate values for RMSE andR2, thus providing an improved estimation compared to the MWARPE and
SCE-UA estimates.

Figure 5: Results of the estimated streamflow in comparison to the observed streamflow from the MWARPE, SCE-UA, and
EDA methods. The MWARPE and SCE-UA estimates were obtained from Ferket et al. [2010], and Pauwels and De Lannoy
[2009].

The estimated model parameter values across the assimilation time steps are compared to the calibrated values
from the MWARPE and the SCE-UA methods in Figure 6. As shown in these results, the calibrated values
from MWARPE and the SCE-UA methods overlap with the estimated model parameter values from the EDA.
The estimated EDA values show the changes in model parameter values in response to the observation data.
The overlap between the estimated EDA values and the calibrated values show the capability of the EDA to
both retrieve the calibrated values and the distribution of model parameter values.
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Figure 6: Comparison of model state variables and parameters between estimates from Ferket et al. [2010], and Pauwels
and De Lannoy [2009] to those obtained from the EDA. The red-coloured symbol represents the MWARPE values; the
blue-coloured symbol shows the SCE-UA values; and the dark-coloured symbol represents the EDA values.

4 FINDINGS AND CONCLUSION

This study has employed the EDA to examine the temporal changes for model states and parameters for soil
moisture assimilation into the JULES model, and streamflow assimilation into the HBV model. The EDA
estimation of soil moisture in the JULES model and streamflow in the HBV model has been shown to be
highly accurate based on the evaluation measures and its comparison to independent outputs from Ferket et al.
[2010], and Pauwels and De Lannoy [2009].

The improved estimation of the EDA procedure is accompanied by updated ensemble values for model states
and parameters providing the capability to examine their temporal changes subject to changes in observation
data. The EDA has been demonstrated to retrieve model states and parameters during DA for soil moisture
into the JULES model and for streamflow into the HBV model. The accurate level of model state variable
and parameter retrieval for these different data types show the functional capability of the EDA procedure
to assimilate different data types into different simulation models. The EDA estimated values illustrate the
capability to explore their clustering patterns with the potential to quantify the level of convergence for model
state variables and parameters. Moreover, the level of clustering or the persistence of model state variables
and parameters which have been subjected to changes in observation data across different assimilation time
periods is indicative of the degree of robustness/sensitivity. The presented EDA results for the JULES model
have identified sensitive and insensitive model state variables and parameters. It is noted that the key prospects
of the EDA approach lie in the evaluation of the updated ensemble members in decision space for model state
variables and parameters. This has the potential for the identification of model weakness, better understanding
and partitioning of physical processes, and improved model predictions.
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