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Abstract: Given the importance of soil moisture for hydrological applications, such as weather and flood 
forecasting, passive microwave remote sensing is a promising approach for retrieving soil moisture due to its 
high sensitivity to near-surface soil moisture, applicability to all weather conditions, direct relationship with 
the soil dielectric constant, and reduced effects from vegetation and roughness. However, passive microwave 
(radiometer) observations suffer from being relatively low spatial resolution, on the order of 36 km. It is 
proposed that this scale issue may be overcome by using active microwave (radar) observations, which have 
much higher resolution when using Synthetic Aperture Radar (SAR) techniques (<3km), and this is the 
approach being taken by NASA’s Soil Moisture Active Passive (SMAP) mission, with a scheduled launch in 
late 2014. The rationale behind SMAP is to use the synergy between active and passive observations in a 
downscaling approach to overcome the individual limitations of each observation type, and ultimately 
provide a merged soil moisture data set at intermediate resolution (~9 km).  

The objective of this study is to test the proposed baseline downscaling approach for the SMAP mission 
using airborne data, thus assessing its viability for future application to SMAP data. The approach is based on 
the hypothesis of a near-linear relationship between radiometer brightness temperature (Tb) and SAR 
backscatter (σ), and has thus far received very limited testing. The experimental dataset used in this study 
was collected during the Soil Moisture Active Passive Experiment (SMAPEx) field campaigns over a study 
site in south-eastern Australia approximately 38km × 36km in size, equivalent to a SMAP radiometer pixel. 
This research focuses on the brightness temperature downscaling algorithm; according to the SMAP 
Algorithm Theoretical Basis Documents these downscaled brightness temperatures will subsequently be 
converted to soil moisture at fine resolution through the traditional passive microwave retrieval algorithm. 

The baseline downscaling algorithm was applied to high resolution data from SMAPEx, which include 1km 
resolution brightness temperature collected by the Polarimetric L-band Multibeam Radiometer (PLMR) and 
~ 10m resolution backscatters collected by the Polarimetric L-band Imaging Synthetic aperture radar (PLIS). 
To minimize noise in the radar data and to approximate the SMAP radiometer/radar pixel ratios (36km Tb to 
9km resolution using 3km σ) the PLIS data were aggregated to 250m resolution, so as to downscale 1km Tb 
to 250m resolution, thus keeping the same ratio of radiometer/SAR spatial resolution as the SMAP mission. 
Results showed that the Root-Mean-Square Error (RMSE) in Tb downscaled at 100m resolution was around 
10K at h-polarization and 8K at v-polarization over a cropping area. This RMSE was reduced to 9K and 7K 
respectively when downscaling to 250m resolution, due to a decreased spatial heterogeneity during 
averaging. It was also noted that results at v-polarization were slightly better than those at h-polarization, 
since the backscatter is more linearly related to Tb at v-polarization than Tb at h-polarization. The accuracy of 
the downscaling over grassland sites was improved by approximately 3K with respect to the cropping area. 
This was attributed to the more heterogeneous conditions in cropping areas, compared to the relatively 
uniform conditions in the grassland area. However, one limitation of this study was the availability of only 
three days of data for estimating the linearity between radar and radiometer observations. 
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1. INTRODUCTION 

Soil moisture is of great importance to global water cycle monitoring and prediction, especially in 
agriculture, hydrology and meteorology (Wagner et al. 2003). With the development of remote sensing 
technology (Schmugge et al. 2002), soil moisture mapping over large areas by remote sensing is becoming a 
potential alternative to traditional monitoring by in situ networks of stations. Consequently, methods are 
being developed to make use of this emerging soil moisture information to constrain numerical model 
prediction of soil moisture (Shi et al. 2009), and hence improve the forecasting of weather and floods, leading 
to significant national benefit. 

Over the past decade, passive microwave remote sensing techniques for soil moisture mapping have been 
accepted as the preferred approach, due to the stronger and more direct connection between the observed 
brightness temperature (Tb) and the near surface soil moisture (~5cm), than with active microwave sensing 
(radar backscatter) or visible/thermal/infrared data (Kerr 2007). Despite the strong soil moisture relationship 
of the passive microwave radiometer approach, it suffers from having a relatively low spatial resolution, 
which is on the order of 36 km at L-band. Conversely, active microwave observations have a much higher 
spatial resolution (better than 1km), but with a more convoluted relationship to changes in soil moisture due 
to the confounding effects of vegetation and surface roughness. Consequently, NASA is developing the Soil 
Moisture Active Passive (SMAP) mission (Entekhabi et al. 2010), scheduled to be launched in late 2014, to 
take advantage of the synergy between the two approaches. The rationale behind SMAP is to use the spatial 
information in the active observations within a downscaling algorithm to provide a downscaled brightness 
temperature product at 9km resolution, which is subsequently converted to soil moisture using a passive 
microwave retrieval algorithm. 

The proposed downscaling algorithm to be applied in the SMAP mission is based on the near-linear 
relationship between radar backscatter σ and radiometer brightness temperature Tb. Such a relationship has 
been observed using data collected from the airborne Passive and Active L-band System (PALS) instrument 
during the Soil Moisture Experiments 2002 and the Soil Moisture Active Passive Validation Experiment 
2008 (Das et al. 2011, Das et al. 2013). However, tests of the SMAP baseline downscaling algorithm are 
limited, and only a few studies have used experimental data. Therefore, the objectives of this paper mainly 
involve: i) to evaluate the effectiveness of this linear brightness temperature downscaling method, using 
experimental passive and active observations collected from SMAPEx field campaigns in Australia; and ii) to 
assess the capability of this algorithm using high-resolution data, including 1km resolution brightness 
temperature and 10m backscatter. In this study, the 1km resolution radiometer data are disaggregated to 
250m resolution by radar observations, keeping the same ratio of the SMAP mission (from 36km to 9km), 
thus evaluating the performance of this downscaling algorithm under a homogeneous and heterogeneous land 
cover conditions. 

2. STUDY SITE 

The SMAPEx study site (see Figure 1a)  is located in the Murrumbidgee catchment near the township of 
Yanco (-34.67°N, -35.01°N, 145.97°E, 146.36°E). The site has been chosen for testing the SMAP algorithm 
performance due to its flat topography, dense monitoring station network, and spatial variability in soil, 
vegetation and land use (Panciera et al. 2013). The SMAPEx experimental design aimed to simulate data 
from the SMAP mission over a landscape typical of south-eastern Australia. To that end airborne data were 
collected over an area the size of a SMAP radiometer footprint (approximately 36km × 38km at this latitude) 
and two additional focus areas using a SMAP simulator.  The airborne SMAP simulator allows high spatial 
resolution active and passive microwave remote sensing measurements to be made at L-band, with 
characteristics similar to those expected from SMAP. The facility includes the Polarimetric L-band 
Multibeam Radiometer (PLMR) and the Polarimetric L-band Imaging Synthetic aperture radar (PLIS) which, 
when used together on the same aircraft, provide a SMAP-like data set useful for developing and testing of 
the algorithms applicable to the SMAP mission viewing configuration.   

Data used in this study were collected from the second field campaign SMAPEx-2 from 6th to 10th July 2010, 
which included 3 days of Regional flights over the entire SMAPEx area and 2 days of Target flights, each 
conducted over a focus area (“YA” and “YB”, see Figure 1a). While the YA area is dominated by crops with 
variations in vegetation characteristics and land conditions, the YB area is a grassland site with relatively 
homogenous conditions. Data collected from Regional flights included 1km resolution PLMR Tb and 10m 
resolution PLIS σ, which in this study were used to analyse the relationship between Tb and σ; data obtained 
from the Target flights included 100m resolution PLMR Tb and 10m resolution PLIS σ which were used to 
perform the Tb downscaling from 1km to 250m resolution. 
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In order to closely replicate the viewing configuration of SMAP, both the PLMR and PLIS data were 
normalized for incidence angle variation to the constant 40˚ angle of SMAP, using a Cumulative Distribution 
Function based method (Ye et al. 2013). The error of this normalization method for PLMR is 2.4 Kelvin (K) 
at 1km resolution; for PLIS it is 3.3dB at 10m resolution and 1.7dB when aggregated to 100m resolution.  

The observed 100m resolution PLMR data from Target flights were linearly aggregated to 1km resolution, 
and the observed 10m resolution PLIS data aggregated to 100m and 250m in order to evaluate the 
downscaling algorithm at different resolutions. An example of the aggregated data over YA area is shown in 
Figure 1.  

3. DOWNSCALING METHOD 

The baseline downscaling algorithm proposed for SMAP is based on the assumption of a near-linear 
relationship between L-band brightness temperatures (in the unit of Kelvin) and L-band backscatters (in the 
unit of Decibel) observed at the same spatial resolution (ATBD 2012, Das et al. 2011, Das et al. 2013). In the 
following the naming convention of ‘C’ (coarse), and ‘F’ (fine) represents the brightness temperature Tb 
(1km) and backscatter σ (250m) resolutions, respectively. Implementation of this method first requires a 
linear regression of observations to derive the coefficients of the relationship: 

Tbp(C) = α(C) + β(C) × σpp(C),     (1) 

where p indicates the radiometer polarization, including h- and v-pol; pp means co-polarization of radar 
observations σ, including hh or vv-pol. Correlations between four different combinations of Tbp and σpp are 
analysed in the next section. The value for σpp(C) is obtained by aggregating 10-30m resolution PLIS data 
within the coarse footprint C having Tbp(C) using the 1km resolution PLMR observations. The method 
further assumes that parameters α(C) and β(C), which depend on vegetation cover and type as well as surface 
roughness, are time-invariant and homogenous over the coarse pixel, so that the α(C) and β(C) derived at C 
resolution can be applied at F resolution. By virtue of this assumption, downscaling of Tb to one grid cell F 
can be achieved by writing (1) as 

Figure 1. (a) Overview of SMAPEx study site (38km×36km size) and target areas YA and YB which are 
used to test the downscaling algorithm; (b) PLMR radiometer brightness temperatures (Tb) over the YA 

target area at v-polarization and 100m resolution , and (c) aggregated to 1km resolution; (d) observed 10m 
resolution PLIS radar backscatters (σ) over the YA area at vv-polarization, aggregated to (e) 100m resolution 

and (f) 250m resolution, respectively. 
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Tbp(Fj) = α(Fj) + β(Fj) × σpp(Fj) ,     (2)                  

where Tbp(Fj) is the brightness temperature value at spatial scale F within a particular pixel of resolution C, 
and σpp(Fj) is the corresponding radar backscatter value. By averaging both sides of (2), one obtains 

<Tbp(Fj)> = <α(Fj)> + <β(Fj)> × < σpp(Fj)>.    (3) 

Here < > is used to indicate averaging across C, which yields <Tbp(Fj)> = Tbp(C), as each F-resolution  pixel 
within C shares the same value of Tb at that scale. Subtracting (3) from (2), and considering α and β as 
homogeneous and therefore equal at each scale, the downscaled Tb at scale F can be obtained as 

Tbp(Fj) = Tbp(C) + β(C) × [σpp(Fj) - σpp(C)].    (4) 

Given that the vegetation conditions and surface characteristics across the entire study area are quite varied, it 
would result in a relatively poor performance of the baseline downscaling algorithm due to the influence of 
variable vegetation and roughness patterns on parameter β. However, since the radar also provides high-
resolution cross-polarization (hv-pol) backscatter measurements at scale F, which are sensitive to vegetation 
and surface roughness characteristics, a further hypothesis is that the sub-grid heterogeneity of parameter β 
within scale C can be corrected using the difference [σpq(C) - σpq(Fj)] from the radar, where pq represents hv-
pol. This heterogeneity indicator can be converted to variations in co-polarization pp backscatter by 
multiplying a sensitivity parameter [δσpp(Fj)/δσpq(Fj)]C, denoted by the variable γ of the particular grid cell C 
for the time of year: γ = [δσpp(Fj)/δσpq(Fj)]C . In other words, this new term γ × [σpq(C) - σpq(Fj)] can be 
described as the projection of the cross-polarization sub-grid heterogeneity onto the co-polarization space, 
thus converting the information of vegetation and surface characteristics to the variation of co-polarized 
backscatter. This term is converted to Tb through the multiplication by β(C) in (4). Consequently, taking into 
account the vegetation conditions and surface characteristics, downscaled Tb at F scale is obtained by 

Tbp(Fj) = Tbp(C) + β(C) × {[σpp(Fj) - σpp(C)] + γ× [σpq(C) - σpq(Fj)] }. (5) 

Using (5) the downscaled Tb is obtained for each pixel in the YA or YB area at 250m resolution; other scale 
resolutions such as 100m can be obtained by using 100m resolution PLIS data, instead of 250m resolution, as 
the input of the fine resolution PLIS data in equation (5). This study downscales the 1km resolution Tb to 
250m resolution, to test the ability of this baseline downscaling algorithm at the same resolution ratio as 
SMAP, which aims to downscale 36km resolution Tb observations to 9km. Furthermore, the downscaling 
algorithm is applied with a 100m target downscaled resolution to evaluate the performance of the 
downscaling approach at different scales. The downscaled Tb at fine resolution (including 100m and 250m) 
is heavily dependent on the quality of the overall PLMR Tb at each 1km by 1km pixel, the relative 
backscatter difference within the coarse grid (1km), and the relationship with Tb as represented by the 
regression slope that adds to the background value Tbp(C). The downscaled results at different resolutions are 
evaluated by comparing with PLMR Tb data at the original resolution of 100m and 250m respectively. 

4. RESULTS AND DISCUSSION 

4.1. Estimation of β and γ 

Prior to carrying out the downscaling algorithm, 
the relationship between Tb at both polarizations 
(h and v) and σ at two polarizations (hh and vv) 
was determined to verify the linear relationship 
assumption which is the foundation of the 
approach, and to estimate parameter β to be used 
in Eq. (5). The parameter γ also has to be 
estimated to represent the sensitivity of σvv to σhv.  

As described, this baseline downscaling algorithm 
is based on the assumption that brightness 
temperature Tbp is linearly related to the 
backscatter σpp at the same scale. Therefore, the 
robustness of this linear relationship is tested in 
this section using the four different combinations 
of Tbp and σpp. The aim is to determine the best 
combination of radiometer and radar channels for 
estimating parameter β. In this case, data from the 

Table 1: Relationship between Tb (K) and σ (dB) at 
different polarizations over the YA and YB areas, β is 
the regression slope of Tb and σ, while R is the 
correlation coefficient between Tb and σ. A total of 36 
pairs Tb and σ were used to estimate β, with standard 
error (in bracket) across each area. 

 YA (crops) YB (grassland) 

Tbh Tbv Tbh Tbv 

σvv β : -4.3(1.2) β : -3.2(1.0) β : -3.0(1.0) β : -2.3(0.8) 

R : 0.62 R : 0.65 R : 0.72 R : 0.80 

σhh β : -5.2(1.3) β : -3.8(0.9) β : -4.5(0.9) β : -3.3(0.7) 

R : 0.59 R : 0.61 R : 0.65 R: 0.71 

σhv β : -5.1(1.2) β : -4.1(1.2) β : -4.7(1.0) β :-3.0(0.9) 

R: 0.21 R: 0.28 R : 0.34 R : 0.37 
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three Regional flights were used. Parameter β was calculated using the regression between the PLMR Tb 
(observed at 1km) and the PLIS σ (aggregated to 1km) collected over each 1km pixel in YA or YB area. Two 
different values of parameter β were estimated: one value for the YA area (characterizing the sensitivity of 
Tbp to σpp over crops), and a second value for the YB area (characterizing the sensitivity over grassland). The 
average β across each area, obtained from 3 days’ time-series over 12 pixels within this area, together with its 
standard error (around 1.0K/dB for different polarization), are listed in Table 1. The σ at vv-polarization had 
the best correlation to Tb, with correlation coefficient R = 0.65 and 0.81 for crops and grassland 
respectively. Conversely, σ at hh-polarization was less correlated to Tb, and showed little correlation at hv-
polarization (R = 0.28 and 0.37). Therefore, σ at vv-polarization and at hh-polarization will be used to 
downscale PLMR Tb to further confirm the influence of the correlation between Tb and σ at different 
polarization on the performance of the downscaling algorithm. Moreover, the magnitudes of β values over 
the YA area are larger than those over the YB area, indicating that the sensitivity of Tb to σ is stronger over 
crops than over grassland. Or in other words, the sensitivity of σ to Tb is stronger for grassland. This is 
mainly because radar backscatter is more sensitive to vegetation conditions than the Tb, which results in 
poorer correlation between σ and Tb in the YA area than in YB area. The availability of only 3 days’ time-
series will influence the robustness of β estimation and further influence the accuracy of downscaling. 

The parameter γ was estimated using the pairs of σvv and σhv within each 1km pixel, so as to obtain the 
regression slope γ at each 1km pixel. Consequently, γ varies across the entire YA or YB area, with a range 
from 0.1 to 0.5 for both areas. 

4.2. Downscaled results 

Based on the respective value of β and γ matrix 
over YA and YB, the 1km Tb aggregated from 
Target flights were downscaled to 100m and 
250m resolution, by using PLIS σ at 100m and 
250m resolution (aggregated from 10m 
resolution) respectively. The downscaled Tb were 
then compared with the reference Tb directly 
measured from PLMR at 100m and 250m 
resolution in order to evaluate the accuracy of the 
downscaling algorithm. Figure 2 and Figure 3 
show the downscaled v-polarized Tb and the 
difference between downscaled and reference Tb 
at different resolutions over YA and YB area 
respectively. By comparing the differences over 
YA and YB, it is noted that results over the YB 
area show an overall smaller error than over YA, 
which could be attributed to the influence of 
heterogeneous vegetation in the YA area on the 
accuracy of the downscaling algorithm. 
Quantitative details are displayed in Table 2, 
from which it can be seen that the RMSE of YB 
has an improvement of approximately 3K at h-
polarization and 2.5K at v-polarization over YA, 
confirming the results from Figure 2 and Figure 
3. In addition, results at v-polarization are better 
than those at h-polarization for both the YA and 
YB area, with an improvement of around 2K. 
This is due to σvv being more strongly related to 
Tb at v-polarization than Tb at h-polarization 
during the estimation of β. Moreover, the results 
at 250m resolution were more accurate than those 
at 100m, on the order of 1K improvement in 
terms of RMSE. This is possibly because the 
speckle noise of radar backscatter is reduced 
when upscaling from 100m to 250m resolution, 
and the error of incidence angle normalization is 
reduced from 100m to 250m resolution. 

 

Figure 2. Evaluation of the downscaling algorithm at v-
polarization over the YA area: (a) Downscaled Tb at 

100m resolution; (b) Reference Tb at 100m resolution 
and (c) the difference; (d) Downscaled Tb at 250m 

resolution; (e) Reference Tb at 250m resolution; and (c) 
the difference. 

Table 2: RMSE (K) of downscaling algorithm using 
σvv and σhh (in bracket) at different polarizations and at 
different resolutions (100m and 250m) over YA and 
YB areas. 

 YA (crops) YB (grassland) 

h-pol v-pol h-pol v-pol 

100m 10.2(12.7) 8.6(10.1) 7.5(8.3) 5.7(6.6) 

250m 9.0(11.1) 7.1(8.8) 5.8(6.9) 4.6(5.5) 
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Additionally, the estimation of β at 1km resolution is closer to β at 250m than at 100m resolution. It is noted 
that downscaled results based on σhh resulted in an RMSE on the order of ~1.8K greater than when using σvv, 
confirming the conclusion from Table 1 that σvv is better correlated with Tb. The influence from the variation 
in β (as indicated by the standard error in Table 1) was also analyzed which was found to result in 
approximately 2K error in the downscaled Tb at 100m resolution. Therefore, a better estimation of β can be 
expected from longer time-series observations over each 1km pixel, thus improving the downscaling 
performance. 

To further evaluate the skill of the downscaling algorithm, the correlation between downscaled Tb and the 
reference Tb was studied with respect to different land cover at 100m and 250m resolution, with results 
displayed in Figure 4. While the black line represents a RMSE between downscaled and reference Tb of 0K, 
the dashed line represents RMSE of ±4K. It is noted from Figure 4 that the variation of Tb over the YA area 
is much larger than the YB area, in response to the wider range of vegetation and land cover across the 
cropping area YA than the relatively homogenous area YB. In addition, a greater fraction of the data at 100m 
resolution is outside the 4K error range 
than at 250m resolution, due to the 
reasons stated above. It is also noted 
that a greater fraction of the data fell 
within the 4K range over the YB area 
than for the YA area. Thus, it can be 
noted that the downscaling algorithm 
has an overall better performance over 
grassland than the cropping area.  

The target error of downscaled Tb at 
9km resolution of the SMAP mission 
is around 2.4K for vegetation water 
content less than 5kg/m2, which is 
much lower than that achieved here. 
The reasons for larger errors when 
using the downscaling algorithm in 
this study may include: i) the 
availability of only 3 days of Regional 
flights for estimating parameter β, as 
the accuracy of β estimation influences 
the resulting accuracy of downscaling, 
which is expected to be improved 
when using a longer time series of 

 

Figure 3. Evaluation of the downscaling algorithm at v-polarization over the YB area: (a) Downscaled Tb at 
100m resolution; (b) Reference Tb at 100m resolution and (c) the difference; (d) Downscaled Tb at 250m 

resolution; (e) Reference Tb at 250m resolution; and (c) the difference.  

Figure 4: Agreement between downscaled Tb (horizontal) and 
reference Tb (vertical) at v-polarization: (a) at 100m resolution 
over YA area; (b) at 250m resolution over YA area; (c) at 100m 

resolution over YB area; and (d) at 250m resolution over YB area.
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data; ii) the incidence angle normalization prior to the downscaling algorithm induced an error around 1.5dB 
for PLIS at 250m resolution and around 2.4K for PLMR at 1km resolution.  

5. CONCLUSION 

The objective of this study was to test the baseline downscaling approach for the SMAP mission, using high 
resolution data from SMAPEx campaign in Australia. In particular, the aim was to constrast the algorithm 
results from an area of low heterogeneity with those from a more typical level of heterogeneity, and to assess 
the best polarization combinations to be used. In this study, radar backscatter aggregated to 100m and 250m 
resolution were used to downscale radiometer brightness temperature at 1km resolution to 100m and 250m 
resolution respectively. The results showed that the RMSE of downscaled Tb at v-polarization was better than 
h-polarization, with an improvement of around 2K, due to Tb at v-polarization being more strongly corelated 
to σvv than Tb at h-polarization. Downscaling to 250m resolution resulted in an RMSE improvement of 
approximately 1K over downscaling at 100m. In terms of the performance over different land covers, it is 
found that RMSE of the downscaling result over relatively homogenous grassland has an improvement of 3K 
when compared to the heterogeneous cropping area. It is shown that the accuracy of the downscaling 
approach is primarily determined by the heterogeneity of vegetation characteristics across the study area, as 
well as the sensitivity of brightness temperature to radar backscatter, as reflected in the parameter β. Based 
on the standard error of the β in this study, a more robust β is expected using a longer time series of 
observations over each 1km pixel in order to distinguish the surface conditions across the entire area, thus 
resulting in more accurate downscaling results, but the main conclusions are not expected to change. It is also 
important that future studies will more extensively investigate the estimation of β and γ with respect to crop 
types, vegetation water content and surface roughness, with the aim to improve the accuracy of downscaling 
results.  
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