
A simple population model with a stochastic carrying
capacity

C. Andersona, Z. Jovanoskia, I. N. Towersa and H. S. Sidhua

aSchool of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Australia.
Email: c.anderson@adfa.edu.au

Abstract: Many ecosystems are subject to external perturbations such as pollution, land clearing and sudden
shocks to their environment. However, most current models used do not take the changing environment into
consideration. In cases where the changes in the environment are taken into account this is usually done by
specifying some time-dependent function for the carrying capacity that reflects the observed behaviour of the
changing environment.

Here we employ an alternative approach where the carrying capacity, a proxy for the state of the environment,
is used as a state variable in the governing equations. Thereby, any changes to the environment can be naturally
reflected in the survival, movement and competition of the species within the ecosystem.

In this paper a simple ecosystem consisting of a single species and its variable environment is studied. Specifi-
cally, a logistic population model that incorporates a stochastic carrying capacity is investigated. The carrying
capacity is treated as a state variable and is described by a stochastic differential equation. The statistical
properties of the carrying capacity and the population are analysed using the Monte Carlo method giving; the
expected time evolution of the population and its variance, the probability distribution of the population and
the mean-time to extinction.
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1 INTRODUCTION

Verhulst’s well known logistic model includes the concept of a ‘saturation level’ or carrying capacity, a value
that represents the maximum population that an environment can sustain (Brauer and Catillo-Chàvez, 2001).
The logistic equation is written as

dNt
dt

= rNt

(
1− Nt

K

)
, (1)

where Nt ≡ N(t) is the population at time t, r is the intrinsic growth rate and K is the carrying capacity.

This simple model has been adapted for over a century, some of which are detailed in Tsoularis and Wallace
(2002). The carrying capacity, often assumed to be a constant (Oppel et al., 2014), can change due to exogenic
and endogenic processes (Cohen, 1995). Models where the carrying capacity is treated as a function of time
to describe changing environmental conditions can be found in Cushing (1977) and Coleman (1979).

The simplest approach to modelling a changing environment is by specifying the carrying capacity as a time-
dependent function (Safuan et al., 2013a). However, this approach is limiting, as it does not allow for the
environment to be shaped by the interdependent relationships between the resources and the population that
consumes them (del Monte-Luna et al., 2004). This issue was mitigated in a series of papers, Safuan et al.
(2011, 2012, 2013b, 2014), models were developed that treated the carrying capacity as a state-variable cou-
pled to the population model.

The variations to the logistic model mentioned thus far have their applications, however, there are many ex-
ternal environmental factors like; fire, drought, floods, resource contamination, etc that need to be accounted
for. By adding stochasticity to the model, it is possible to account for the effects of such perturbations on the
population that deterministic models ignore.

How stochasticity is added to population models is a modelling issue. Usually, environmental fluctuations are
modelled by adding noise to the ‘crowding term’ (the reciprocal of the carrying capacity), the nonlinear term
of (1), leading to (Kloeden and Platen, 1992; Méndez et al., 2010)

dNt = rNt

(
1− Nt

K

)
dt+ rσN2

t dWt. (2)

Here Wt is a standard Weiner process with IE [Wt] = 0, Var (Wt) = t and the noise intensity is σ.

2 THE MODEL

An alternate approach was proposed by Safuan et al. (2011). The approach is based on treating the carrying
capacity as a state variable, that is, governed by a separate equation that describes the changes in the carrying
capacity. A simple stochastic extension of the Safuan et al. (2011) model is

dNt
dt

= rNt

(
1− Nt

Kt

)
, Nt=0 = N0 (3)

dKt = −γ (Kt − k1) dt+ σdWt, Kt=0 = K0 (4)

The population, Nt, is still modelled by a logistic equation but now coupled to the carrying capacity, Kt,
which in turn is modelled by a stochastic differential equation. Equation (4) consists of a deterministic and a
stochastic term. In the absence of random variations, σ = 0, (3) and (4) can be solved exactly (Safuan et al.
(2013a)). It represents a model for the growth of bacteria under an occlusion of the skin.

Equation (4) is commonly known as the Ornstein-Uhlenbeck equation (OU), a stochastic process that is sta-
tionary, Markovian and Gaussian (Uhlenbeck and Ornstein, 1930). The OU is ‘mean-reverting’ (drifts towards
its long-term mean k1). Figure 1 shows several realisations (paths or trajectories) ofKt with different parame-
ters. From the top plot the ‘mean reverting’ nature of OU can be seen: starting with different initial conditions
K0 all realisations approach k1. How fast realisations of Kt approach k1 depends on γ. It places a constraint
on how large the random variations can get. Large variations, either above or below k1 are pulled back to k1.
The bottom plot shows realisation of Kt for different noise intensities, σ = 1, 0.5, 0.1. In particular it depicts
a realisation that reaches Kt = 0 in finite time when σ is large, in a relative sense to other parameters. If
the situation arises such that Kt = 0, then the environment can no longer sustain the population leading to
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Figure 1. Three different realisations of Kt with parameters (top) γ = 0.03 and σ = 0.1, (bottom) K0 = 15
and γ = 0.01. For both cases k1 = 10.

extinction. From a conservationist perspective, predicting extinction times are very important (Foley, 1994).
As (4) is independent of Nt it can be solved separately, giving the well known solution of the OU equation

Kt = k1 + (K0 − k1) e(−γt) + σ

∫ t

0

eγ(s−t)dWs. (5)

Substituting (5) into (3) leads to

dNt
dt

= rNt

1− Nt

k1 + (K0 − k1) e(−γt) + σ

∫ t

0

eγ(s−t)dWs

 , Nt=0 = N0. (6)

The exact solution of (6) is currently unknown, the numerical solution is discussed in the next section.

3 EXPECTED SOLUTION PATH

According to (5), the distribution of Kt (conditioned on K0) is normal, Kt ∼ N(µt, σ
2
t ), with (conditional)

mean and variance

µt = IE [Kt] = k1 + (K0 − k1) e−γt, (7)

σ2
t = Var (Kt) =

σ2

2γ

(
1− e−2γt

)
. (8)

However, from an ecological perspective, we require that Kt > 0, therefore the exact conditional probability
distribution for Kt is (Feller, 1996)

IP(Kt, t|K0) =
1√

2πσ2
t

(
e
− (Kt−µt)2

2σ2t − e
− (Kt+µt)

2

2σ2t

)
. (9)
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Figure 2. The mean and variance of the carrying capacity and the population. The plot shows both the
numerically simulated values and the analytical model. Here K0 = 15, k1 = 10, N0 = 2, r = 0.1, γ = 0.05

and σ = 0.5.

Note that IP(Kt = 0, t|K0) = 0 constitutes an absorbing boundary condition; when the carrying capacity
reaches zero it remains there. Ecologically this condition represents the collapse of the environment thus
leading to the extinction of the population.

Knowing the properties of Kt, a Monte Carlo approach was employed to determine the distribution of Nt and
its mean and variance. This was achieved by constructing 40,000 realisations of OU (5). For each realisation,
(6) was solved numerically using Euler’s method with a step size of ∆t = 0.01. This size of ∆t was a good
compromise between accuracy and computational effort. The mean and variance of Kt and Nt are plotted in
Figure 2.

On both plots, the simulatedKt is plotted in black, the simulatedNt is plotted in blue, for the initial conditions
K0 = 15 and N0 = 2. The top plot shows the (conditional) mean of Kt which coincides with the predicted
mean given by (7). It is possible to write (6) formally as

Nt =
ert

1

N0
+

∫ t

0

rers

Ks
ds

. (10)

An exact algebraic expression for IE [Nt] is not possible. An approximate expression for the (conditional)
mean of Nt is obtained by replacing Ks in (10) with IE [Ks]

IE [Nt] ≈
ert

1

N0
+

∫ t

0

rers

IE [Ks]
ds

. (11)

The predicted mean for Nt is also shown in the plot (red). Apart from the early transient behaviour the means
of Kt and Nt both approach k1, independent of the initial conditions.
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Figure 3. Quantile-quantile plots at different times of the population (Nt) against the carrying capacity (Kt).
The parameters are: K0 = 15, N0 = 5, k1 = 10, r = 0.1, γ = 0.05 and σ = 0.1.

Similarly, in the bottom plot, the (conditional) variance ofKt matches up with the theoretical expression given
by (8). No simple expression for the variance of Nt could be found. We note that Var (Nt) < Var (Kt) for all
time t. However, beyond some time, t� 1/γ, each asymptotically converges to some constant, but different,
value.

A quantile-quantile plot (qq-plot) of the simulated values of Nt against Kt is shown in Figure 3. It demon-
strates that the distributions are similar and since the slope of the line is less than one it further indicates that
Var (Nt) < Var (Kt), as mentioned previously.

4 DISTRIBUTION OF EXTINCTION TIMES

As alluded to previously we require Kt > 0 for all t. However as can be seen from Figure 1 there is a
realisation for which Kt reaches zero. According to (4) this is quite feasible depending on the relative size of
γ and σ, for fixed k1 and K0. On the characteristic time scale of 1/γ the dynamics of Kt is predominantly
governed by the Weiner process, W (t), and if σ is large then it is possible for Kt to reach zero. The instant
Kt = 0, it remains there and the environment can no longer sustain the population, resulting in its extinction.

The probability of the environment collapsing by time t is 1−S(t|K0) where S(t|K0) is the survival function

S(t|K0) =

∞∫
0

IP(Kt, t|K0) dKt.

The distribution of the first-hitting (extinction) time represents the probability density for which Kt has col-
lapsed by time t. It is defined by f(t|K0) = −S′(t|K0). The distribution is (Wang and Uhlenbeck, 1945)
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Figure 4. Plot showing both the theoretical and numerical probability distribution function of the first-hitting
time for Kt with K0 = 12, k1 = 10, r = 0.5, γ = 0.01 and σ = 2.

f(t) =
2e

− µ2
t

2σ2
t


√

2πσ2
t

·
(
µtσ
′
t

σt
− µ′t

)
, (12)

where µt and σ2
t are given by (7) and (8), respectively. Here, µ′t and σ′t are the derivatives of the mean and

variance. Figure 4 is a plot of the probability density function for the first-hitting times. The Monte Carlo
simulations are shown as dots (blue) and the line is the theoretical probability density function given by (12).
It is clear that (12) is a good approximation. Furthermore, extensive numerical simulations indicated that the
first-passage times for Nt may also be approximated by those of Kt.

5 CONCLUSION

In this paper, the carrying capacity is considered as a proxy variable for the state of the environment in which a
species is assumed to reside in, such as bacteria under an occlusion of the skin (Safuan et al., 2011, 2013a). In
this context the stochastic environment is approximately described by the OU process. The ‘mean reverting’
aspect of the OU process is reflected in the fact that the skin (body) can ‘self-regulate’ thus skin conditions do
not greatly depart from normal (Safuan et al., 2011). We have investigated the implications of coupling the
OU process, as a proxy for random fluctuations in environmental conditions, to the logistic equation (3). The
exact probability function for Kt was found. The qq-plots indicated that Nt has a similar distribution to Kt.
Beyond the early transient period, the means are the same and the variance is constant, albeit smaller for Nt.

These observations can be explained with reference to (3) and (4). No matter how complicated (4) may appear
and as long as it is independent of Nt then in principle it can be solved for Kt. From the differential equation
for Nt, when Kt is higher than Nt, Nt will increase toward Kt and when Kt is lower it will decrease toward
Kt. This implies that the populationNt will always pursue the carrying capacityKt. In the special case where
r is large this means that the rate of change ofNt will be large in magnitude so that it followsKt more closely.
For this reason, the fluctuations of Nt will always be smaller than Kt, Var (Nt) < Var (Kt).

In the extreme case where r → ∞ we have Nt = Kt so that the distribution of Nt will be the same as the
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distribution of Kt. In this case only do we have Var (Nt) = Var (Kt).

The interesting case occurs when r is small, in which the distribution of Nt may no longer be similar to Kt. It
could be approximated by simulation and use of kernel density estimators.

A full analysis requires the construction and solution of the associated Fokker-Planck equation to (3) and (4)
with appropriate (absorbing) boundary conditions (Kt = 0 or Nt = 0). Even in this case, the analysis would
be formidable. It may be possible to make progress in the cases for which the intrinsic growth rate, r, is very
large or when 0 < r � 1. This is currently under investigation.
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