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Abstract: With ever increasing energy costs, finding an optimal design to strike a balance between 
thermal comfort, indoor air quality and energy consumption has become a constant challenge for engineers. 
A number of research works have been carried out to develop a computational design optimization method 
for the indoor environment where design indices such as predicted mean vote (PMV), percentage dissatisfied 
of draft (PD), age of air, CO2 concentration and energy cost were considered. Nevertheless, previous studies 
mainly focused on single objective optimization procedures where artificial weighting factors were 
introduced to combine all design objectives into one single objective function. It is well known that the 
optimal design may be sensitive to the weighting factors. Different weighting factors could result in 
substantially different optimal solutions.  

In attempting to resolve the aforementioned problem, this paper provides some preliminary results on the 
development of a multi-objective optimization algorithm, which could be integrated into generic 
computational fluid dynamic (CFD) packages. A nondominated sorting-based multi-objective particle swarm 
optimization (NSM-PSO) algorithm has been developed to perform design optimization for a typical office 
room based on CFD predictions. The supply air temperature and velocity are the design parameters selected 
to optimize against the predicted mean vote (PMV), CO2 concentration and energy consumption as objective 
functions. The results show that the optimal design temperature ranges from 290.15K to 294.15K, and the 
velocity ranges between 0.15m/s and 0.44m/s where a 3D Pareto-optimal front is given within the range. 
Based on the given Pareto-optimal front, designers could then choose the optimal design which is well-
balanced between thermal comfort, air quality and energy consumption. 
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1. INTRODUCTION 

In recent decades, with the development of computational simulation technology, the usage of numerical 
methods in engineering design has attracted significant attention in the literature. Compared to conventional 
design cycle, numerical simulations offer a faster and more economical way for engineers to assess or predict 
the design performance and its relationship to different design parameters. It is envisioned that the numerical 
approaches will become important tools in engineering design and optimization in the near future. 
Computational Fluid Dynamics (CFD) has aroused much attention from heating, ventilation and air-
conditioning (HVAC) system researchers. Many studies have been performed to assess and optimize the 
performance of a given HVAC system using CFD techniques. "Fong et al. (2006)” proposed a novel 
simulation-EP (i.e. evolutionary programming) coupling approach to optimize the energy consumption for 
the HVAC system in a local subway station. "Lin et al. (2009)” studied the effect of partitions in an office on 
the performance of under floor air supply ventilation system via CFD simulation. "Zhou and Haghighat 
(2009a, b)” published their research results about ventilation system optimization using the CFD-ANN 
(Artificial Neural Network)-GA (Genetic Algorithm) combination method in 2009. "Stavrakakis et al. 
(2011)” did some research on the window size selection for optimizing occupational comfort. "Li et al. 
(2013)” proposed a POD (Proper orthogonal decomposition) model in their research of ventilation system 
operation optimization. "Zhai et al. (2014)” developed an inverse design method for indoor ventilation 
system using CFD and GA. 

In order to quantify the system performance, some common design indices such as predicted mean vote 
(PMV), percentage dissatisfied of draft (PD), age of air, CO2 concentration and energy cost are considered as 
optimization objective in literature. In most of the previous works, the multiple design indices were blended 
to a single objective problem using artificial aggregating or weighting factors. A generic form of objective 
function constructed by aggregating and weighting several indices is given by:  

                            
1 1 2 2(x) (x) (x) (x)n nf f f fω ω ω= + + ⋅⋅⋅+  

                                                     (1) 

where ω1,…, ωn are the aggregating/weighting factors. One obvious drawback of this method is that the 
optimal design could be critically sensitive to the weighting factors. In other words, different sets of 
weighting factors could result in substantially different optimal solutions. Therefore, these weighting factors 
must be chosen very carefully in the optimization procedure. In addition, this method of handling a multi-
objective optimization gives only one optimal solution, which means the designers have no flexibility in 
selecting alternative solutions. As an attempt to overcome the aforementioned shortcoming, in this study, we 
propose the use of a nondominated sorting-based multi-objective particle swarm optimization (NSM-PSO) 
algorithm to achieve multi-objective optimization without any weighting factors. This population-based 
algorithm, as an improved technique of the basic particle swarm optimization (PSO), can give a group of 
nondominated (i.e. non-biased) solutions, providing the engineers with multiple options from which they can 
select the most appropriate design based on professional judgment or end-user input "Carrese et al. (2011)”.  

In essence, the HVAC system design is a multi-objective optimization problem where the objectives are 
generally conflictive with each other. For example, we prefer a cooler office environment in hot summer. 
Meanwhile, we would also like to reduce the energy consumption of air-conditioning. Nonetheless, in 
general, the energy consumption is inversely proportion to the supply air temperature. Therefore, the 
optimization algorithm aims at seeking a trade-off between several different design objectives. The vector-
valued of multi-objective optimization is of the form: 

1 2(x) ( (x), (x), , (x))nf f f f= ⋅⋅⋅                                                            (2) 

where the vector f represents n conflicting objectives. The theoretical solutions of multi-objective 
optimization problem are called Pareto Front, which is constituted by the whole nondominated solutions. The 
traditional solution from weighting method is only one point located on the Pareto Front. The NSM-PSO is 
capable of finding a host of points which are well distributed on the Pareto Front, and providing designers 
more flexibility in choosing their favorite solutions.  

In this paper, we present some preliminary results on the development of a multi-objective optimization 
algorithm which could be integrated into generic CFD packages. The two state-of-the-art numerical 
techniques (CFD and NSM-PSO) are combined together to assess and optimize the performance of a HVAC 
system design in a typical office room. In the following preliminary study, among all design parameters of 
the system, the temperature and the velocity of the supply air (i.e. the two critical design variables) were 
selected for assessment and optimization. The system performance will be evaluated against thermal comfort, 
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Figure 1. CFD-based multi-objective 
optimization system framework. 

air quality and energy consumption. The predicted mean vote (PMV), CO2 concentration and energy 
consumption are therefore selected to construct the objective functions. 

2. METHODOLOGY 

In order to perform a multi-objective optimization, a 
sufficient data set of input-output that represents the 
response of the system performance in relation to each 
design parameter, should be generated in advance. As 
mentioned above, a generic CFD framework has been 
adopted as a reliable predictive tool to construct the 
input-output data space. To ensure the validity of the 
simulation, predictions of the CFD model were 
validated against full-scale experimental data by Yuan et 
al. (1999). After validation, simulations with different 
control variables (i.e. inlet temperature and velocity) 
were performed to obtain the corresponding system 
performance for the output space (i.e. PMV, CO2 
concentration, energy consumption). The output space 
was then passed into the NSM-PSO to perform an 
iterative optimization process which searches the Pareto 
front (i.e. finds optimal trade-off solutions). Multi-
dimensional interpolation is applied to calculate the 
fitness value of particles. A schematic of the overall 
methodology is depicted in Figure 1. 

2.1. Basic Particle Swarm Optimization 

The particle swarm optimization (PSO) has been widely adopted as a population-based stochastic 
optimization method. The method was first introduced by "Kennedy (2001)” based on the inspiration drawn 
from observing social behaviors of ants which include learning from previous experience and communicating 
with successful individuals. In the PSO algorithm, each particle has its own position and velocity, which are 
represented by xi and vi, respectively and they are updated according to the following equations: 

1 1 2 2(t 1) (t) ( (t)) ( (t))

(t 1) (t) (t 1)

i i i i g i

i i i

v v c p x c p x

x x v

ω ϕ ϕ+ = + − + −

+ = + +
                                           (3) 

where pi and pg represent the personal best position and global best position, respectively, and c1 and c2 are 
two uniform random numbers within the range [0, 1]. The φ1 and φ2 are two constants which are set to 2. The 
parameter ω decreases with increasing iteration number within the range [0.4, 1.2]. To avoid overflow of the 
search space, both the position and velocity are limited within boundaries, [xmin, xmax] and [vmin, vmax], 
respectively. Unfortunately, the original architecture of the PSO is only capable to solve a single-objective 
optimization problem. 

2.2. Nondominated Sorting-based Multi-objective PSO 

In order to enable the basic PSO to solve multi-objective optimization problem, "Li (2003)” applied a 
Nondominated Sorting Method (NSM) to the original PSO inspired by "Deb et al. (2002)”. In NSM-PSO, the 
updating equations for particle position and velocity do not change, but the selection methods of personal 
best and global best are different. Nondominated comparison between particles’ personal bests and their 
offspring is used to decide the new personal bests. Nondominated sorting is carried out in a temporary 
population which consists of N particles’ personal bests and N their offspring (therefore 2N individuals) to 
decide the nondomination rank of each individual. Then the global best is selected from the group which has 
top nondomination rank and in order to avoid local optimal aggregation, crowding distance is calculated and 
sorted. Therefore, the global best must meet both the following requirements: top nondomination rank and 
largest crowding distance. Throughout the iteration process, the particles are moving towards the Pareto-
optimal Front guided by the leader (global best) and are well distributed because of population diversity 
maintenance (crowding distance). 
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Table 1. The boundary conditions. 

Number Name Boundary details Comments 

1 
Air-
conditioning 

Normal speed & 
Static temperature 

Controlled 
variables 

2 Exhaust Average static pressure 0[Pa] 
3,4 Occupant Temperature 37[C] 
5,6 Desktop Heat flux 108.5[W/m2] 
7,8 Table Adiabatic ------- 
9 Partition Heat transfer coefficient 3.7[W/(m2K)] 
10,11 Furniture Adiabatic ------- 
12-17 Light Heat flux 34[W/m2] 
 Room wall Heat transfer coefficient 0.19[W/(m2K)] 

 

Figure 2. The layout of the typical office 

3. OPTIMIZATION OBJECTIVES 

In the present study, the thermal comfort, air quality and energy consumption were taken into consideration 
for the assessment of the HVAC system performance. In contrast to most previous research, we optimize the 
three objectives simultaneously in the optimization process, rather than integrating all of them into one 
objective function with weighting factors. The definition of the Predicted Mean Vote, CO2 concentration, and 
energy consumption are briefly discussed as follows. 

3.1. Predicted Mean Vote 

The predicted mean vote (PMV) is a thermal comfort evaluation index which was first introduced by "Fanger 
(1972)”. This value represents the mean subjective satisfaction with the indoor thermal environment with a 
number between -3 (cold) and +3 (hot). Zero is defined as the ideal value representing thermal neutrality and 
our objective is to make |PMV| as small as possible. Fanger’s equations are used to calculate the PMV with a 
particular combination of air temperature, mean radiant temperature, relative humidity, air speed, metabolic 
rate, and clothing insulation "Fanger (1972)”. In this paper, we evaluated the average PMV based on the 
predicted field information obtained from CFD simulations. 

3.2. CO2 Concentration 

To assess the air quality within the space, the concentration of CO2 emitted by occupants throughout the 
office room was also resolved in the CFD simulation. In the simulation, the CO2 is emitted from the 
occupants with the velocity and concentration of 0.018 m s-1 and 4.0 ppm respectively. Similar to the average 
PMV, the average CO2 concentration was extracted from the predicted CFD field information. 

3.3. Energy Consumption 

The energy costs of air-conditioning can be divided into two parts: ventilation fan power and cooling/heating 
energy consumption "Li et al. (2013)”. These two parts and total energy costs can be determined by the 
following equations: 

           
/

/

( ) ( )

air
fan

fan

cooling heating supply p return supply outdoor outdoor return

total fan cooling heating

P V
E

E m c T T m h h

E E E

η
⋅=

= − + −

= +

                      (4) 

where P is air pressure difference of the fan and V is volume flow rate of supply air (m3 s-1), m represents the 
mass flow rate of the air (kg s-1), cp is the specific heat capacity of air, T represents temperature, h is the 
specific enthalpy of air (J kg-1) which is related to air temperature and relative humidity. Similarly, we can 
get energy costs from the CFD-Post package. 

4. SIMULATION RESULTS 

4.1. Case Description 

In order to study the aforementioned HVAC system design optimization, a three-dimensional computational 
domain representing a typical office room was constructed. Figure 2 shows the geometry layout of the 
computational domain. The cooling air flows from the air-conditioning at the right and leaves the room from 
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Figure 3. Comparisons between the CFD results 
and experimental data. 

Figure 5. Comparisons of PMV contour between 
baseline case (upper) and case 2 (lower). 

 
 

Figure 4. Response surfaces of the three 
objectives (PMV, energy, CO2). 

the exhaust at the center of the roof. Details of the boundary conditions are listed in table 1. The temperature 
and velocity of the inlet are controlled variables and other boundary conditions are fixed for all simulations. 
To get enough sample data, a total of 25 simulations with different combinations of controlled variables were 
carried out; where the inlet temperature was chosen from {17,18,19,20,21}[°C] and the velocity was chosen 
from {0.1,0.2,0.3,0.4,0.5}[m s-1]. In this study, the commercial CFD package – ANSYS CFX 14.5 was 
adopted to simulate air flow and heat transfer within the typical office room. 

4.2. CFD Simulation Results 

To ensure the validity of the CFD simulation, 
predictions of the CFD model were  first validated 
against the full-scale experimental data reported by 
"Yuan et al. (1999)”. Figure 3 shows the comparisons 
between the measured and predicted air temperature 
and velocity along a vertical line at the center of the 
office room under the inlet condition (17°C, 0.09m s-

1). The blue lines are the results extracted from the 

CFD simulation and the red dots are the experimental data report by "Yuan et al. (1999)”. As depicted, the 
predicted temperature and velocity are in satisfactory agreement with the experimental measurements; 
showing that the CFD predictions are reliable for design optimization.  
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Table 2. Optimization results with different weighting 
factors. 

Variables Baseline 
case

Case 1 Case 2 Case 3 

Weights ----- [0.5,1] [1,1] [1,0.5]
Tin [C] 17.0 20.7 20.6 20.8 
Vin [m/s] 0.10 0.14 0.17 0.20 
PMV 0.27 0.18(33%) 0.05(81%) 0.006(98%) 
Energy [W] 624.5 480.2(23%) 624.7(0%) 684.8(-10%) 

 

Figure 6. Nondominated 
solutions considering two 

objectives: PMV and energy. 

 

Figure 7. Nondominated solutions 
considering two objectives: CO2 

concentration and energy. 

 

Figure 8. Nondominated solutions 
considering two objectives: CO2 

concentration and PMV. 

Afterwards, the validated CFD model was then applied to predict the response surface of the system 
performance (i.e. PMV, CO2 and energy) with respect to different design parameters (i.e. supply air 
temperature and velocity). The corresponding response surface is shown in Figure 4. The response surface 
was then passed to the NSM-PSO for multi-objective optimization. The optimization results are discussed in 
next section. 

4.3. Optimization Results 

In order to make a comparison, two sets of optimization methods were performed in the present study. The 
first method adopts a similar approach as in previous works using weighting factors to construct a single 
objective function. The second method adopts the proposed NSM-PSO to find multiple equally good and 
well-distributed solutions. 

Weighting method 
In this optimization process, two objectives (i.e. PMV and energy consumption) are selected to construct the 
objective function, given by: 

1 2PMV Energyf f fω ω= +                                                                    (5) 

where ω1 and ω2 are the weighting 
parameters which determine the optimization 
results. Table 2 shows the impact of 
weighting factors on the optimal results and 
Figure 5 shows a comparison of PMV 
contour between the Baseline case (17°C, 0.1 
m s-1) and the improved Case 2 (20.6°C, 0.17 
m s-1). 

For Case 1 in Table 2, it can be observed that 
both the thermal comfort and energy 
consumption are improved in comparison to the baseline case (i.e. 33% and 23%, respectively). Comparing 
Case 1 with Case 2, by reducing the weighing factor for energy, a higher (i.e. 81%) thermal comfort 
improvement could be achieved. Nonetheless, the Case 3 would cost 10% more energy compared with the 
baseline case. Therefore, we can conclude that the results are sensitive to weighting factors and this method 
can only output one solution in each run. Moreover, because different designers would have different 
preferences, it is difficult to fix the weighting factors in advance and only giving one solution per run 
provides no flexibility in choosing alternative trade-off solutions. 

Nondominated sorting method 
To remedy the drawback of the first method, the NSM-PSO is a weighting factor free optimization 
procedure, and multiple trade-off solutions can be provided in one run. In this paper, the iteration number is 
set to be 100 and the nondominated solutions by NSM-PSO method are shown in Figures 6-9, where each of 
the blue dots represents a solution in the objective space. Figures 6-8 indicate the nondominated solutions of 
2-objective problems provided by the NSM-PSO (PMV-Energy, CO2-Energy and CO2-PMV, respectively), 
and Figure 9 shows the nondominated solutions of a 3-objective problem considering all the three objectives 
(PMV-Energy-CO2). Obviously, the NSM-PSO provides multiple nondominated solutions (i.e. improvement 
in terms of one objective comes from a sacrifice on at least one of other objectives), providing designers with 
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Figure 9. Nondominated solutions considering 
three objectives: PMV, CO2 concentration and 

energy. 

flexibility in choosing alternative solutions which are equally good. After getting the optimal Pareto front, 
engineers can select one set of design parameter from the front according to their professional judgments or 
end-user preferences.                 

5. CONCLUSIONS 

This paper presents some preliminary results on the 
development of a multi-objective optimization algorithm 
which is tailored to be integrated with generic CFD 
packages. The commercial CFD package – ANSYS CFX 
was adopted to simulate and predict the air flow and heat 
transfer in a typical office room. A total of 25 CFD 
simulations with different combinations of inlet 
temperature and velocity were carried out to obtain the 
response surface for optimization. Different with 
previous research, the NSM-PSO was utilized to perform 
multi-objective optimization, which is capable to find 
multiple different but equally good optimal solutions 
with only one optimization run. The results show that the 
combination of CFD and NSM-PSO is a feasible and 
promising method for multi-objective engineering 
optimization design. 
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