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Abstract: In this contribution we consider the problem of flux identification in a scalar conservation law
modeling the phenomenon of sedimentation. The experimental observation data used for the calibration consist
of a solid concentration profile at a fixed time. The identification problem is formulated as an optimization
one, where the distance between the profiles of the model simulation and observation data is minimized by a
least squares cost function.

The direct problem is approximated by a monotone finite volume scheme. The numerical solution of the
calibration problem is obtained by a continuous genetic algorithm. Numerical results are presented in order to
validate the efficiency of the proposed algorithm. The optimization by a continuous genetic algorithm turns
out to be more robust than previous calibration attempts with a gradient method.

The calibration of the model uses a set of measurements along the column at a fixed time t = T . The n
measurement locations are denoted as xi The solids concentration values measured in these points are φi
which means that the data set for the calibration is specified as{

(xi, φi) ∈ [0, H]× [0, umax] : 0 = x0 < x1 < · · · < xn−1 < xn = H
}
.

In practice, the data are represented by a curve, i.e. one defines uexp : [0, H] → [0, umax] such that
uexp(xi) = φi. In terms of this experimental information, the inverse problem of determining the flux function
is formulated in an abstract setting as the optimization problem

minimize J(u, f) :=
1

2

n∑
i=0

∣∣∣(u− uexp)(x̄i)
∣∣∣2, (1)

where u is the solution of the direct problem for the given parameter set, and f = f(u) is the flux function of
the governing equation

ut + f(u)x = 0, for x ∈ (0, H), f(u) = 0 for x ∈ {0, H}. (2)

To handle the problem (1) it is reduced to a parameter identification problem, where one assumes that the flux
function f is parametrized having a parameter vector e = (e1, . . . , ed) ∈ Rd, which means f(·) = f(·; e).
In consequence, the parameter identification is formulated by the following optimization problem in several
variables:

minimize J (e) := J
(
u(e), f(u(e); e)

)
(3)

The search of the minimum of the cost function (3) follows the first-discretize-then-optimize paradigm, using
a standard finite-volume scheme for solving the direct problem.
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1 INTRODUCTION

Sedimentation is a mechanical process used for separating the components of a solid-liquid mixture. Its
remarkable benefits in industrial processing promoted it to a relevant phenomenon for scientific research,
see Bustos et al. (1999). The guidelines of sedimentation theory for incompressible materials were initially
established by Kynch (1952). This theory proposes conditions under which sedimentation processes can be
modeled using a nonlinear one-dimensional transport equation in form of a scalar conservation law. Although
these assumptions are idealizing, they give a very reasonable explanation of the phenomenon. Up to now,
several extensions of this theory have been developed; the main historical aspects of the development of the
corresponding theory are detailed in Bustos et al. (1999); Bürger and Wendland (2001); Concha and Bürger
(2003).

The key component of a conservation law is the flux function, which describes the properties of the used mate-
rial in dependence of the solids concentration as unknown variable. In the model calibration problem one starts
with a solids concentration profile at a fixed time and supposes a parametric form of the flux function. The
parametrization of the flux function is a result of empirically verified constitutive equations. The calibration
problem is formulated as an optimization problem, where a parameter vector is searched that minimizes the
distance between the solution profile of the model and the observed profile.

In the recent decades, the calibration problem has received considerable attention, see Berres et al. (2005);
Bürger et al. (2008, 2009), where the optimization problem was solved by a gradient method. However, the
rigorosity of this approach is unresolved, because the entropy solution of a scalar conservation law is typically
a discontinuous function, even when the initial condition and the flux function has a high regularity. The low
regularity of the solution of the state equations implies a low regularity of the cost function. In particular, the
differentiability of the cost function is a complicated issue.

In this contribution, the optimization problem is solved by applying a continuous genetic algorithm. The cost
function is discretized using the numerical solution of the direct problem. The natural numerical approxi-
mation of the direct problem is made using the finite volume method, where the numerical flux is according
to Engquist and Osher (1981). The numerically constructed cost function defines an integer programming
problem. Therefore, the application of a binary coded genetic algorithm is very slow such that we opt for the
implementation of a continuously encoded genetic algorithm, for details consult the book of Haupt and Haupt
(2004) and also the references Michalewicz (1992); Holland (1975); Goldberg (1989). The continuous genetic
algorithm proposed for the calibration is applied to synthetic observation data. This contribution is a draft
version of a more extended paper, where the performance of the algorithm is tested by several examples.

The present contribution is organized in four sections. In Section 2 the modeling hypothesis of the Kynch
model are stated and the sedimentation model is deduced and genetic algorithm is outlined. In Section 3 the
numerical results of the parameter identification are presented. Finally, in Section 4 some conclusions of the
work are stated.

2 THEORY

2.1 Mass and momentum balance of a mixture

The theoretical basis of mixtures within continuum mechanics is established in the works of Fick, Stefan and
Maxwell, the formalization in the theoretical framework known today was established by Truesdell. This
theory assumes that every point in the space can be occupied by a finite number of different particles, one
for each system component. Consequently, the mixture can be represented as the superposition of several
continuous media, each of which maintains its own movement together with the specifications imposed by the
interactions. In the theory of mixtures each component satisfies a balance equation. If an extensive property
per mass unit of the i-th component of the mixture with density ρi is denoted by Gi then

∂

∂t
(ρiGi) +∇ · Ji − ri = 0, (4)

where Ji is the density flux and ri is the generation rate of the i-th component per volume unit. The flux can
be separated into its convective and diffusive part and establish the following equation

∂

∂t
(ρiGi) +∇ · (ρiGiv) +∇ · JD − ri = 0, (5)
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where v is the mean velocity of the mixture and JD is the diffusive flux. The balance equation (5) can be used
to derive application specific mass and momentum balances.

2.2 Mathematical sedimentation model

The mathematical sedimentation model describes a mixture of solid particles immersed in a fluid, see Figure 1
for a schematic illustration. It is assumed that the mixture satisfies the following properties:

(A1) All solid particles are of the same size, shape and density.

(A2) The solid and fluid of the mixture are incompressible. There is no mass transfer between the
components.

(A3) The relative solid-liquid velocity is vr = vs − vf , where vs is the velocity of the solid and vf is
the velocity of the liquid, dependent only on the local solids concentration u.

(A4) Wall effects are negligible.

x = H

x = 0

t = 0 t = t1 > 0 t = t2 > t1

H

u0

u

x

u(x, 0)

H

u0

u

x

u(x, t1)

H

u0 umax

u

x

u(x, t2)

Figure 1. Separation process within sedimentation column

The mass balances for the solid and fluid phase are

ut +∇ · (uvs) = 0, (1− u)t +∇ · ((1− u)vf ) = 0, (6)

respectively. Defining the mean volumetric velocity q(x, t) = uvs+(1−u)vf and summing up both equations
one obtains∇·(q(x, t)) = 0. From the mass balance equations for the solids and fluid phase it can be deduced
that for the sedimentation bath the differential equation modeling the problem has the form

ut + (fb(u))x = 0, x ∈ [0, H], t > 0, (7)

where H denotes the height of the mixture contained in the column. According to the empirical evidences, the
properties which the flux functions needs to satisfy are

fb(u) < 0, u ∈ (0, umax), fb(0) = fb(umax) = 0, f ′b(0) < 0 and f ′b(umax) > 0. (8)

In practice, this constraint is implicitely imposed by the choice of the parametric form of the flux function. In
the example, the flux function

fb(u) = v∞u

(
1− u

umax

)C

, (v∞, C, umax) ∈ (−∞, 0)× (1,∞)× (0, 1]. (9)

is considered. Note that the negative v∞ < 0 complies with the constraint fb(u) < 0. The parameters which
are identified are v∞, C and umax, establishing the parameter vector

e = (e1, e2, e3) = (v∞, C, umax) (10)
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with d = 3 elements.

The equation (7) is a non-linear first order hyperbolic equation and should be supplemented by adequate initial
and boundary conditions. The conditions (K3) and (K4) imply

u(x, 0) = u0, x ∈ [0, H], u(0, t) = umax, t > 0, u(H, t) = 0, t > 0, (11)

where u0 and umax are constants such that 0 < u0 < umax < 1. In consequence, the sedimentation model
in the column is given by the equation (7) with initial and boundary conditions given by (11) and a flux
function satisfying (8). Equivalently to the boundary conditions stated in (11) one can set zero-flux boundary
conditions. The reason is that during a downwards moving flow a zero-concentration at the top and a full
packing at the bottom have the same effect as walls.

2.3 Genetic algorithm

Evolutionary computation techniques applied to numerical optimization mimic the principles of natural selec-
tion formulated by Darwin. The foundations of evolutionary computation are the following four paradigms:
Genetic algorithms (Holland, 1975), genetic programming (Koza, 1992), evolutionary strategies (Rechenberg,
1973) and evolutionary programming (Fogel et al., 1966). Genetic algorithms are the most popular technique
because of their simplicity of implementation, global convergence and several other advantages extensively
described in Sivanandam and Deepa (2008). The first genetic algorithm was proposed by Holland (1975) in
his pioneering work. Following this work, various improvements have been developed and proposed by sev-
eral researchers. The most complete and technically advanced reference is the book of Michalewicz (1992).
In the following the standard terminology of genetic algorithms is used. For completeness of the presentation
the main concepts are recalled: chromosomes, genes, population and generation, for more details see Haupt
and Haupt (2004); Holland (1975); Sivanandam and Deepa (2008).

The definitions of basic concepts are as follows:

Definition 1. A chromosome is an array of parameters that parametrizes the cost function and is subject to be
identified.

Definition 2. A gene corresponds to one of the components of the parameter vector, thus a gene is part of the
chromosome.

Definition 3. A population is the set of chromosomes.

Definition 4. A generation is the population defined after each iteration of the genetic algorithm.

Usually chromosomes are encoded at the birth of each generation. The mostly used genetic algorithms select
a representation either as a binary number or as a floating-point. Taking into account the requirements of the
problem, in this contribution the second option is chosen, since the representation of the physical parameters
require many bits. In fact, in the considered situation, a real coded genetic algorithm is the natural choice,
since the variable of the parameter space is continuous. On the other hand, for general optimization issues,
this formal choice is less relevant in view of the fact that the genetic operations in the implemented algorithms
are decisive for its performance (Gaffney et al., 2010). If the cost function is continuous then the chromosomes
do not require to be encoded before being evaluated by the cost function. See the book of Haupt and Haupt
(2004) on the advantages and disadvantages of both representations.

The continuous genetic algorithm consists of two major steps, the selection of the initial population and the
natural selection. More specifically it has the following description:

(a) Initial population. Definition of a matrix that stores the initial random population:

E =
[
e1|e2| · · · |en

]t
,

where each row ej ∈ Ω ⊂ Rd, j = 1, . . . , n, belongs to the hypercube Ω defined as Ω :=∏d
i=1[li, ui] ⊂ D, with li < ui for i = 1, . . . , d.

(b) Natural selection.
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(b1) Cost of the population. Definition of the vector cost := (J∆(e1), . . . ,J∆(en)) ∈ Rn by the
evaluation of the cost function in each of the chromosomes of the population E. Definition of the
aggregated matrix Ê = [E|cost]. If there exists some ` ∈ {1, . . . , n} such that J∆(e`) ≤ Jmin,
then the solution of discrete minimization problem is sufficiently approximated by e` and the
iteration is stopped. The notation Jmin is used for the tolerance of the evaluation of the cost
function.

(b2) Selection of the parents. The parents are selected in three steps. Firstly, the matrix Ê is updated
permuting the columns such that Ê1,d+1 ≤ Ê2,d+1 ≤ . . . ≤ Ên,d+1. Secondly, if s ∈ (0, 1]

denotes the selection rate, then the first JnsK rows of Ê are selected and the sub-matrix of the
so-called mating pool matrix F is stored. The notation J·K is used for the upper integer function.
Thirdly, applying a stochastic process like the rule of roulette, the parents are selected from the
chromosomes of F, see Haupt and Haupt (2004) for technical details.

(b3) Mating. For the interbreeding of the parents an algebraic rule is defined. In this contribution
the new chromosomes are obtained by applying a convex combination of the parents genes. The
mating process ends when n − JnsK new chromosomes are generated. The matrix E is updated
considering that the parents are stored in the first JnsK rows and the children in the following rows.

(b4) Mutation. Let µ ∈ [0, 1] denote the mutation rate and m := Jµ(n − 1)dK the total number of
mutations. During the mutation process, repeatedly m times, the random gene Eij is replaced by
a random number equally distributed in the range [lj , uj ]. One observes that after the mutation the
matrix E is naturally updated.

For more details on the genetic algorithm see Haupt and Haupt (2004); Sivanandam and Deepa (2008).

3 RESULTS OF THE IDENTIFICATION

In this Section the continuous genetic algorithm is applied to the identification of parameters of the flux func-
tion fb. For the genetic algorithm the parameter configuration suggested by Haupt and Haupt (2004) is used:

Parameter name Value
Population (n) 20
Selection rate (s) 0.5
Cost tolerance (Jmin) 1.0× 10−6

Mutation rate (µ) 0.37
Maximum of iterations 20

It is assumed that the sensors are located in x̄i = `/20, i = 0, . . . , 20. In the example we consider a flux
function defined by (9) where the parameters v∞ = −2.7 × 10−4 and umax = 0.5 are prescribed such that
C remains as only free parameter. In order to obtain synthetic experimental data a simulation of the direct
problem is performed with observation time T = 3500, initial condition u0(x) = 0.05, mesh refinement in
terms of number of volumes M = 800 and target parameter C = 5.

The set of values for the synthetic experimental data obtained by simulation of the direct problem are

φ̄0 = 0.49759914, φ̄1 = 0.31229822, φ̄2 = 0.25193333, φ̄i = 0 for i = 3, . . . , 20. (12)

Thus one obtains the following fitted function as observation profile for T = 3500:

uexp(x) =

{
(b2 −

√
b2 − 4a(c− x/T ))/2a, x ∈ [0, 0.1]

0 otherwise,
(13)

with a = 8.29285e−4, b = 7.52058e−4 and c = 1.69437. The values a, b, c are chosen such that the function
(13) fits best to the data (12). For the genetic algorithm we set Ω = [2, 7] as search range for the parameter to
identify. See Figure 2 for the comparison of the observed profile with the profiles obtained through the random
chromosomes.

4 CONCLUSIONS

In this contribution a continuous genetic algorithm has been successfully validated in order to resolve the
calibration problem of a flux function in a conservation law modeling the physical phenomenon of sedimenta-
tion of solid particles immersed in a fluid, where the flux function satisfies physical considerations introduced
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Figure 2. Example 1: (a)–(c) Random initial population of some selected chromosomes, (d) Profile of the best
chromosome at the 20-th generation.

by Kynch (1952). The distance between observed and identified profiles permits to conclude that the genetic
algorithm resolves adequately the parameter identification problem for scalar non-convex conservation laws.

An unexpected observation with respect to the performance of the genetic algorithm is that in some test cases
(see full paper version for details) the cost function of the best chromosome remains at the same level for
various generations, and then suddenly decreasing, in order to remain again several steps in the next lower
level. This means that, whereas the overall chromosome pool is permanently improving, the best chromosome
usually maintains its composition during a certain period.

It is also noted that this new algorithm exceeds disadvantages of previously studied calibration methods like
the gradient based optimization in Berres et al. (2005); Bürger et al. (2008, 2009), which include the following
aspects: (a) the genetic algorithm randomly chooses the starting point for the iteration and (b) the genetic
algorithm does not need an assumption on the differentiability of the cost function.

The identification algorithm turned out to be stable in spite of perturbed synthetic observation data (see full
version for documentation of examples). The considered inverse problem is overdetermined, since, in the con-
sidered example as well as in practically relevant situations there are much more observation data (here 20,
in industrial applications up to 1000) than free parameters to fit (usually never larger than 5). This overdeter-
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mination classifies the considered inverse problem as a regression problem, which infact demonstrated to be
stable with respect to experimental errors, as can be judged from the stable identifications even though the data
are perturbed by noise.
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