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Abstract: Given a numerical simulation m : ξ 7→ ynum, the objective of parameter estimation is to provide a
joint posterior probability distribution p(ξ|yexp) for an uncertain input parameter vector ξ ∈ Rd, conditional
on available experimental data yexp ∈ Rq . However, exploring the posterior requires a high number of
numerical simulations, which can make the problem impracticable within a given computational budget.

A well-known approach to reduce the number of required simulations is to construct a surrogate, which —
based on a set of training simulations — can provide a inexpensive approximation of the simulation output for
any parameter configuration.

To further reduce the total cost of the simulations, we can introduce low-fidelity as well as high-fidelity training
simulations. In this case, a small number of expensive high-fidelity simulations is augmented with a larger
number of inexpensive low-fidelity simulations. We investigate the scaling of the computational cost with the
number of parameters, as well as the optimal ratio of the number of low-fidelity and high-fidelity training
simulations.

Figure 1. Lines plan of the sailing yacht hull used for multi-fidelity surrogate-based parameter estimation,
showing the sections, buttocks, waterlines and diagonal cuts.

As an application we consider a towing tank experiment of the sailing yacht hull shown in Figure 1. The high-
fidelity and low-fidelity simulations mHF and mLF solve the free-surface Reynolds-averaged Navier-Stokes
equations on high and low-resolution grids, respectively. Experimental data yexp are available for the resis-
tance, sinkage and pitch over a range of Froude numbers. The uncertain parameters ξ are the tank blockage,
the mass and the centre of gravity. As a result we conclude that the centre of gravity is very close to the value
provided by the laboratory, and that the tank blockage and mass are negatively correlated.
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1 INTRODUCTION

The objective of this investigation is to use experimental data to estimate the uncertain input parameters (tank
blockage, mass and centre of gravity) of a sailing yacht hull. To reduce the number of required simulations,
we first create a surrogate of the output of the computer simulation. Once the surrogate is available, we can
evaluate it at relatively low cost, which enables us to estimate the parameters without further solver evaluations.

In Section 2 we discuss Kriging and multi-fidelity Kriging surrogate modelling. In Section 3 we investigate
the performance of multi-fidelity Kriging for an analytical test-function. In Section 4, we apply multi-fidelity
Kriging to estimate the parameters of the sailing yacht hull.

2 METHOD

In Section 2.1 we discuss parameter estimation using Bayes’ Rule, where our approach is to explore the
likelihood at lower cost by approximating the simulation output with a surrogate. In Sections 2.2 and 2.3 we
discuss Kriging and multi-fidelity Kriging, which we will use as the surrogate.

2.1 Surrogate-based parameter estimation

Given experimental data yexp ∈ Rq and uncertain parameter ξ ∈ Rd with prior probability density p(ξ), we
use Bayes’ Rule (Bayes, 1763; Laplace, 1774):

p(ξ|yexp) ∝ p(yexp|ξ) p(ξ), (1)

to obtain the posterior distribution of the uncertain parameters, conditional on the experimental data. We
assume an unbiased, uncorrelated normal likelihood, given by:

yexp|ξ ∼ N
(
m(ξ),Σ

)
. (2)

The likelihood models the experimental process: given a choice of the uncertain parameters ξ, the simulation
m : Rd → Rq ; ξ 7→ ynum acts as the expected value of the experimental data yexp, while Σ is the q × q
experimental error covariance matrix.

Solving the inverse problem by exploring (1) is expensive, as it requires multiple evaluations of the solver m
in (2), at high computational cost of up to hours or days for an individual solve, to the extent of making the
solution of the problem impracticable. Our approach is to create a surrogate m̃ of m, which, based on a set of
training simulations, provides a statistical estimate of the output of the numerical solver (Sacks et al., 1989).
In the next subsections, we discuss the construction of an accurate surrogate.

2.2 Kriging

To construct a surrogate m̃ we introduce a processX ∈ Rn, which represents the ideal simulation output. We
model the covariance ofX by the normally distributed prior:

X ∼ N (µ, P ), (3)

with mean µ ∈ Rn and n×n covariance matrix P , which is a function of ξ. We run N numerical experiments
to obtain training data ytrain ∈ Rr, where r = Nq, and we now note that n = q + r. We assume the unbiased
and uncorrelated likelihood:

ytrain|X ∼ N (HX, R), (4)

with r × n observation matrix H , which selects the training data, and r × r observation error covariance
matrix R. Using Bayes’ Rule we define the surrogate as the expectation of the process X (Matheron, 1963;
Gandin, 1965; Cressie, 1993; Wikle and Berliner, 2007):

m̃(ξ) = E(QX|ytrain)

= Qµ+QKξ(ytrain −Hµ), (5)

where we have the n× r Kalman gain Kξ = PHT (R+HPHT )−1 and the q×n prediction matrix Q, which
selects the experimental data. We note that the covariance matrix P depends on the input parameters ξ, as
we generate P from a Gaussian covariance function, where we find the correlation lengths from a maximum
likelihood estimate (Mardia and Marshall, 1984). The conditional covariance cov(QX|ytrain) is not used in
this paper but can be found in (Wikle and Berliner, 2007).
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Figure 2. A low number of high-fidelity simulations
can lead to an inaccurate surrogate. Adding low-
fidelity simulations improves the quality of the sur-
rogate.

Input ξ

O
ut

pu
t x

 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1
MF Kriging
Prior
Data
Posterior

Figure 3. Surrogate-based Bayesian parameter esti-
mation, using the prior p(ξ) and the likelihood p(d|ξ)
to obtain the posterior p(ξ|d). Note that the pdfs have
been scaled.

2.3 Multi-fidelity Kriging

The objective of multi-fidelity Kriging is to augment a small number of high-fidelity observations yHF with a
large number of low-fidelity observations yLF. The assumption is that:

XHF = XLF +XD, (6)

with high-fidelity processXHF, low-fidelity processXLF and difference processXD. This approach is useful
ifXD is much smoother thanXHF. The multi-fidelity Kriging predictor is given by (Kennedy and O’Hagan,
2000; Forrester et al., 2007; de Baar et al., 2015):

m̃MF(ξ) = µHF +KMF(yMF − µMF), (7)

where yMF = (yLF,yHF)T and the gain:

KMF = HselectPMFH
T
MF(R+HMFPMFH

T
MF)−1, (8)

with:

HmfPmfH
T
mf =

(
HLFPLFH

T
LF HLFPLFH

T
HF

HHFPLFH
T
LF HHFPLFH

T
HF +HHFPDH

T
HF

)
, (9)

and:

HselectPMFH
T
MF =

(
HxPLFH

T
HF PLFH

T
HF + PHFH

T
HF

)
. (10)

Here we have deviated from (Kennedy and O’Hagan, 2000; Forrester et al., 2007) by assuming that ρ = 1.

Figure 2 illustrates the effect of including the low-fidelity simulations for a simple test-function. Clearly,
including the low-fidelity data improves the accuracy of the Kriging prediction. Using the same multi-fidelity
surrogate, Figure 3 illustrates surrogate-based parameter estimation. Note that the posterior can be multi-
modal. This corresponds to the observation that the deterministic approach does not have a unique solution.

3 RESULTS FOR A TEST-FUNCTION

As seen from the approximation m ≈ m̃ in the likelihood (2), surrogate-based parameter estimation requires
an accurate surrogate, which can be constructed at low computational cost. A key performance indicator is
the number of solves that are required to achieve a certain target accuracy δ, such that the surrogate prediction
error

√
{m̃MF(ξ)−X}2] < δ. This indicator is known as the number of ‘solves to target’.

Using a test-function, we investigate the effect on the number of solves to target for two important variables:
(1) the optimimal ratio between the number of low-fidelity and high-fidelity and (2) the computational speedup
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Figure 4. The optimal lowfi-to-hifi ratio depends on
the target accuracy (2-dimensional case).
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Figure 5. The optimal lowfi-to-hifi ratio depends on
the number of parameters.
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Figure 6. The number of high-fidelity solves required
to produce a surrogate of a given target accuracy in-
creases with the number of parameters. Including
low-fidelity solves reduces this effect.

1 2 3 4
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

# Uncertain Parameters

S
pe

ed
up

Figure 7. The speedup, which is defined as the ratio
of the cost of the high-fidelity and multi-fidelity sur-
rogates, increases with the number of parameters.

we can expect for an increasing number of input parameters. As the response of many engineering simulations
is smooth, we choose a smooth test-function:

mHF(ξ) =
d∑

k=1

cos(
4

5
πξk), (11)

mLF(ξ) =
d∑

k=1

cos(
4

5
πξk) +

d∑
k=1

sin(
1

5
πξk), (12)

for the high-fidelity and low-fidelity process, respectively, for a d-dimensional parameter space. We further
assume that the cost of a high-fidelity simulation is 10 times that of a low-fidelity simulation. All results are
averaged over 5 different space-filling sampling plans (Forrester et al., 2008).

3.1 Lowfi-to-hifi ratio

The first important question is: what is the optimal ratio of the number of low-fidelity to high-fidelity simula-
tions? This ratio is likely to be influenced by the required target accuracy of the surrogate, as well as by the
number of dimensions.

Figure 4 shows the effect of the lowfi-tho-hifi ratio on the total cost (measured in high-fidelity simulations) to
achieve various relative target accuracies in the two-dimensional case. In general, it is more expensive to reach
a higher accuracy, however, the optimal lowfi-to-hifi ratio appears to be at a constant value.
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Figure 8. The free-surface elevation (left-hand side) and wetted surface (right-hand side) for a Froude number
of Fn = 0.49, the highest velocity included in the calibration process.

Table 1. Input parameters ξ.

Parameter Symbol Mean Std. Unit
Blockage c 1.004 0.002 -
Mass M 36.95 0.07 kg
Centre of gravity xCoG -0.96 0.05 m

Table 2. Output uncertainties in data y.

Parameter Symbol Std. Unit
Resistance R 0.2 N
Sinkage ∆z 0.13 mm
Pitch α 0.05 o

Figure 5 shows the effect of the lowfi-tho-hifi ratio on the total cost to achieve a relative target accuracy of
0.1, but now for an increasing number of uncertain parameters. The optimal lowfi-to-hifi ratio appears to be
increasing linearly with the number of dimensions.

3.2 Computational speedup

Figure 6 shows how the cost of constructing an accurate surrogate, with a relative target accuracy of 0.1,
increases with the number of parameters. If we use only high-fidelity simulations, indicated by the blue line,
the cost increases dramatically, an effect known as the ‘curse of dimensionality’. When we use both low-
fidelity and high-fidelity simulations, the overall cost, indicated by the red line, is reduced significantly.

Figure 7 shows the computational speedup, defined as the ratio of the computational cost of constructing
either the high-fidelity or the multi-fidelity surrogate. The grey area indicates the standard deviation as a
result averaging results over different sampling plans. The speedup appears to increase almost linearly with
the number of parameters, indicating that the multi-fidelity approach becomes increasingly efficient for more
higher-dimensional inverse problems.

4 RESULTS FOR A SAILING YACHT HULL

The Delft Systematic Yacht Hull Series (DSYHS) is a range of 70 systematically varied yacht hulls, based on
a number of parent models (Kerwin, 1975; Gerritsma et al., 1981; Keuning and Katgert, 2008). We consider
DSYHS hull number 25, the lines plan of this hull is shown in Figure 1 and the waterline length is 2 m. This
hull has been tested in a towing tank with a length of 142 m, a width of 4.22 m and a water depth of 2.50 m.
The hull has been tested up to a Froude number of Fn = 0.75, however, we currently restrict ourselves to
speeds of Fn 6 0.5.

For the numerical simulations m we use FINE/Marine (Numeca, Brussels, Belgium), a free-surface Reynolds-
Averaged Navier-Stokes (RANS) solver with a finite volume spatial discretisation (Duvigneau et al., 2003;
Visonneau et al., 2006). We use a Menter-SST k–ω turbulence model (Menter, 1994). For the high-fidelity
and low-fidelity simulations, we use grids of 380, 000 and 42, 000 cells respectively. Because a change in
blockage is equivalent to a change in velocity, we introduce the velocity as a dummy parameter. The solution
for Fn = 0.49 is illustrated in Figure 8, showing the typical high bow wave as well as a wave length which is
close to the hull length.

Based on expert opinion, we consider three uncertain input parameters ξ: the tank blockage c, the hull mass
M and the lengthwise position of the centre of gravity xCoG. The estimated mean and standard deviations are
given in Table 1. Estimating the posterior of these input parameters is the main objective of this paper. The
experimental output uncertainties in the data y are estimated in Table 2. Most of the estimated input and output
uncertainties are based on ITTC (2002) and ITTC (2011).

To construct the surrogate, we use a use a space-filling design (Forrester et al., 2008) to create a set of training
data of 24 high-fidelity and 120 low-fidelity simulations. Without adding new simulations, we then exploit the
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surrogate during the parameter estimation.
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Figure 9. The prior marginal distributions of the un-
certain parameters.

1 1.004 1.008
Blockage

36.8

36.9

37

37.1

M
as

s 
[k

g]

−1 −0.96 −0.92
X

CoG
 [m]

−1

−0.98

−0.96

−0.94

−0.92

X
C

oG
 [m

]

Figure 10. The posterior marginal distributions of the
uncertain parameters.
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Figure 11. Experimental data and simulation results
for the prior parameter distribution.
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Figure 12. Experimental data and simulation results
for the posterior parameter distribution.

The prior distribution of the uncertain parameters is illustrated in Figure 9. As a result of the uncertainties in
the input parameters, we see large uncertainties in the corresponding simulation results in Figure 10, where the
lines indicate the expected value and the shaded areas indicate the standard deviation in the simulation results
as an effect of the uncertain inputs. Given the experimental data, we find the posterior parameter distribution
in Figure 11. Interestingly, we see a negative correlation between the mass and the blockage, which might
be explained by the fact that both quantities have the effect of increasing the resistance. The corresponding
simulation results are shown in Figure 12, now with a much smaller standard deviation.

5 CONCLUSIONS

We have investigated the performance of multi-fidelity Kriging for a test-function. Results indicate that the
lowfi-to-hifi ratio scales with the number of uncertain parameters, and that the method shows a linear speedup
when the number of parameters increases. However, further investigations are necessary.

We have succesfully applied multi-fidelity Kriging to estimate three uncertain parameters — tank blockage,
hull mass and centre of gravity — for a sailing yacht hull. The estimated values are close to the values given
by the laboratory.
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