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Abstract: The ability to predict the spread of a bushfire is important for operational management during
bushfire events as well as risk assessment in vulnerable regions. Models for the rate of spread of a bushfire
typically require a number of input parameters to operate, including topographic information, meteorological
conditions and information on fuel conditions and variability. The predictive ability of a bushfire spread model
is limited by the accuracy of these input parameters. Accurate national topographic information exists and
detailed meteorological information is readily forecast. However, fuel condition information is often specific
to a particular fire behaviour model for a particular vegetation type, such as forest or grassland, and generally
requires detailed surveys of disparate sources to prepare suitable spatially explicit maps. This preparation
can be both time-consuming and cost-prohibitive. Furthermore, these fuel parameters often require a pre-
processing step before they can be used in a predictive model.

We demonstrate an approach to determining vegetation and fuel classification from remote sensing data such
that the data can be directly integrated with a computational bushfire perimeter propagation model. We use
freely available Landsat 8 spectral data for the input remotely sensed data set. The fuel classification uses an
unsupervised K-Means algorithm allowing forest, grassland, and water regions to be classified. Two extensions
to the method are also trialled for potential improvement to results; the addition of a topography data set as
an additional input to the spectral data sets, and a principal component analysis run prior to the K-Means
classification.

The bushfire perimeter propagation model uses the CSIRO Spark framework for predicting the spread of fires
across the landscape and is already integrated with the open-source OpenCV image analysis tool-kit. The
K-Means algorithm is also implemented in OpenCV such that the data can be processed within the same
framework. We demonstrate the applicability of the approach to a bushfire prone region in South East Aus-
tralia. Our system can be used for any region within Australia and potentially worldwide, allowing up-to-date
fuel classification and input data to be automatically generated and used in predictive models.

Using these methods, it was determined that, out of all the spectral band combinations, using the coastal
aerosol, green, and SWIR 1 produced the best classifications. The addition of topography information did not
appear to improve the method, and neither did the principal component analysis on its own. However, using
the first component of the principal component analysis in combination with an input band containing the local
variance of this component gave a slight increase in the calculated accuracy.

There is the potential for fuel information to be similarly generated from the spectral data, as well as full
colour images of the terrain. Input data layers produced using this process would all share the same spatial
characteristics, removing the need for any pre-processing such as cleaning, re-projection or alignments steps.
Furthermore, the layers can be generated immediately from the most up-to-date data sets available, ensuring
currency in the modelling process.
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1 INTRODUCTION

The prevailing fuel properties of vegetation are fundamental to the behaviour and spread of a bushfire (Sullivan
et al., 2012). Consequently, it is necessary to have high quality, spatially explicit information about those
fuel properties in order to accurately predict bushfire spread over the landscape. However, such information
is difficult and costly to collect as it generally requires in situ physical assessment of fuels (e.g. Gould et al.
(2011)). In Australia, particularly, it requires considerable effort given the large areas at risk combined with the
highly dynamical nature of the vegetation and use of the land. Where spatially-explicit fuel information does
exist, it is often collected sporadically due to the expense and thus out of date when it is needed. Furthermore,
continued advances in bushfire behaviour models can mean that previously collected fuel information is no
longer sufficient or appropriate to run a new or revised bushfire behaviour model (Cruz et al., 2015).

As satellite data becomes more accessible at higher qualities and resolutions, acquiring up-to-date detailed fuel
information quickly and efficiently is increasingly feasible (e.g. Keane et al. (2001)). This is chiefly due to the
rapid development in sensing platforms and high-speed delivery of raw data. However, converting this raw data
into usable information requires a high level of processing. In the field of bushfire management, much work
has been done, for example, in developing specific data processing methods for determining grassland curing
state (e.g. Newnham et al. (2011)). Frequently the products of these methods are static maps of fuel state
applicable for a given period, but often the map is much older than the most recently available data due to the
time and effort required to process it. Consequently, predictions of likely fire spread can be erroneous because
they are not using up-to-date information. A method of providing rapid processing of raw remotely-sensed
data into timely fuel information for provision to bushfire spread prediction is therefore required.

Before specific fuel attributes can be calculated it is necessary to know vegetation type, as the attributes re-
quired are vegetation-dependent. The first step towards providing fuel information directly through remote
sensing is therefore the classification of the data into vegetation types. Image classification has recently started
allowing the expansion of study areas for hazard research for both pre-event risk and post-event impact analy-
sis. Very high resolution satellite imagery allowed Thouret et al. (2014) to obtain infrastructure information for
a large area in Peru in order to assess a city’s vulnerability to flash flooding and earthquakes. The use of image
classification to provide fuel type classifications has been tried for specific regions in countries internationally,
such as Riaño et al. (2002) in Spain and Varga and Asner (2008) in Hawaii. We are yet to see this directly
incorporated into a fire model however, particularly in an Australian environment.

Various methods can be used to perform image classification, with the optimal method highly application
dependent. Features to consider when choosing a method include allowable computation time, available train-
ing samples, contrast between classes, data resolution, available spectral bands, and existing auxiliary data.
Following Lu and Weng (2007) we categorize the methods as per-pixel, contextual-based, knowledge-based,
sub-pixel or per-field. It is also possible to combine methods in what is termed a combinative approach.

The most straightforward and frequently used classification methods are those in the per-pixel category. Per-
pixel algorithms assume no spatial relationship between pixels. The more commonly used algorithms in the
per-pixel category include maximum likelihood (ML), neural network (NN), decision tree (DT) and support
vector machines (SVM). Of these four, ML is the simplest to implement, however a study comparing ML,
NN, and DT algorithms for land cover classification in England by Pal and Mather (2003) clearly found ML
to be the worst performing and DT comparable to NN in quality but better in terms of speed. Alonso-Benito
et al. (2013) performed a similar comparison between SVM, ML and NN for mapping forest fuels on Tenerife
Island, Spain and found SVM methods produced the highest accuracies.

The above per-pixel methods can be referred to as supervised algorithms. This means the algorithm is trained
on a set of known points and then run using the set of parameters determined by this training set. It is also
possible to have unsupervised classification algorithms which create classes purely based on the distributions
of the input data. Two such algorithms are ISODATA and K-Means (KM) clustering. These methods are
provided with a set of input parameters and iteratively partition data into clusters by determining appropriate
cluster centroids. Although these algorithms do not tend to appear in the fuel classification literature, they are
well established methods (Wu et al., 2007) for situations with insufficient training data.

Contextual- and knowledge- based methods use additional levels of information to the spectral data. In the
case of contextual-based this is further information about the data itself, such as local variation in values
surrounding the pixel. In the case of knowledge-based it is taken from auxiliary data that could influence
classes, such as topography. As an example, Riaño et al. (2002) found the addition of a texture map and
topography improved their supervised ML classifications when generating fuel maps for Spain from Landsat.
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Figure 1. RGB satellite image of Otways (left), the recorded land use (centre), and topography (right).
The land use categories are: water (red), forested (yellow-green), urban (dark green) and grassland (orange).
Topography ranges from 0 m (white) to 663 m (black) above sea level.

The last categories are sub-pixel and per-field. Sub-pixel algorithms allow pixels to be split into multiple
classifications. This is useful in situations such as when the data resolution is too large to capture small land
features. Per-field approaches consider the image as a series of objects or fields. The image is divided into
objects, sets of spatially-connected pixels, and classification is done on the objects rather than individual pixels.

There are currently several limitations in the application of remote sensing data for fuel state classification.
The satellite cannot see through forest canopy, and hence cannot directly provide information on forest surface
fuels. Additionally, current resolutions are still too low to provide information on small scale features, such as
roads. However, satellite resolution is constantly increasing and in the near future it is possible this latter issue
will become obsolete. Regardless of these limitations, the benefits of automation and data recency mean that
there is enormous potential for remote sensing data for calculation of fuel and coverage data in open terrain.

This paper provides an outline of methods for determining the fuel information required for Australian fire be-
haviour models to integrate with the fire spread prediction model, Spark (Hilton et al., 2015). It details how we
used remote sensing methods to provide high resolution, up-to-date vegetation classifications from Landsat 8
data to Spark. This is the first step towards providing fuel information using remote sensing techniques such
that fire simulations can be run with the most up-to-date fuel information and with minimum time.

2 CLASSIFICATION TECHNIQUE

2.1 Data and study area

Spectral data was taken from the Landsat 8 satellite, courtesy of the U.S. Geological Survey (USGS). Landsat
satellites have been in use since 1972 with the purpose of monitoring land use. Landsat 8 is the most recent
satellite, launched in 2013. There were 7 bands of interest: coastal aerosol (1), blue (2), green (3), red (4), near
infrared (5), and short-wave infrared, SWIR, 1 (6) and 2 (7). The satellite provides coverage at a frequency of
16 days at a resolution of 30 metres for these bands. USGS also provides a ‘quality of data’ band which details
the quality of the data with respect to possible defects such as cloud, snow or terrain occlusion. For further
information, see U.S. Geological Survey (2015).

The area of interest for this paper was around the Great Otway National Park in Victoria, Australia. This
area consists of a variety of land types and uses; coastal, forested national park, grassland national park, rural,
grassland, and farming areas. A check of the quality band indicated no defects were occuring within the data.
Auxiliary datasets available for the area were a topography map from Geoscience Australia (2013) and a land
usage map from The State of Victoria, Department of Economic Development, Jobs, Transport and Resources
(2015). Images of the Otways region and its recorded land use and topography are shown in Figure 1.

2.2 Classification algorithms

For this paper we used the unsupervised K-Means (KM) algorithm due to the lack of training data available to
run a supervised method. Potential parameters were tested on single band classifications to determine the most
appropriate. Once these were chosen, additional levels of information were added to test for improvements to
output quality and computational time. The different combinations of data used as input to the KM were:

1. Multiple spectral bands; up to all seven available.
2. The first component of a principal component analysis (PCA) for each combination of the bands.
3. The first three principal components from a PCA performed on all possible combinations of the bands.
4. The ground height, slope, or aspect with the first principal component from the PCA.
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Required Parameter Tested Values Selected Value
Number of clusters 4, 10, 50, 100 50
Termination criteria Max. iterations=100; Final δ < 10 -
Execution attempts 1, 2, 5 1
Centre initialisation Arthur and Vassilvitskii (2007) (AV), Random AV

Table 1. Function parameters tested and selected for the OpenCV implementation of the K-Means algorithms.
Termination criteria had only a single set of values and hence the selected set was the tested set.

5. Local variance, using a 5x5 moving window, of the first component from the PCA along with the com-
ponent itself.

An explanation of the implementation of both the KM and PCA algorithms is given in Section 2.3. The
terrain related data sets were used to see if the addition of vegetation-influencing information could improve
the classifications determined. These input data sets were set to the same resolution as the spectral bands and
treated as an additional input band to the KM algorithm.

It was necessary to automatically assign a category to the computed cluster output in order to effectively
analyse the classification. This was done using the land use data set by finding the median value of the land
use occurring within each of the computed clusters.

2.3 OpenCV implementation of fuel classification

In order to provide fast implementation of the fuel classification processes, the OpenCV libraries of Bradski
(2000) were used. OpenCV was already a key component of the Spark framework and hence the data can
be directly processed into the simulation framework. These libraries provided the functions for both the KM
and PCA algorithms. The KM function is moderately customisable through a number of parameters. The
parameters required, tried, and selected for the OpenCV implementation of this algorithm are given in Table 1.
The PCA algorithm in OpenCV calculates the covariance matrix with the input data pixels as the sample units,
and the spectral readings as the variables measured on these sample units.

2.4 Accuracy evaluation of each classification method

The comparison data available for this classification was the land use data set. In order to determine the success
of the classification the pixel amount by which the final classification deviated from this data set was analysed.
This was done in the following stages:

1. When determining the appropriate values for the parameters in the single band analysis, the accuracy
of water classification was determined. As water bodies are a generally constant landmark, except in
periods of severe and extended drought, their locations are known to a high degree of confidence even
if data was collected several years in the past. This was considered a good measure of accuracy for
the purposes of choosing the best values. Two values were calculated; the number of pixels correctly
classified as water, and the number of pixels which were classified as water but should not be water.

2. In the determination of the appropriate parameters the compactness of the classifications was also com-
pared. The compactness is the sum of the squares of the difference between the pixel values and the
determined cluster (classification group) centres. This is calculated within the OpenCV function.

3. For the consequent classifications the resulting images were firstly judged by eye. This involved check-
ing that all the water bodies were in the appropriate places, and that the location of the forested and
grasslands was intuitively correct and producing smooth rather than highly alternating regions.

4. Once the classifications of interest were selected, these were quantitatively compared to the land use im-
age by determining the percentage of pixels in the image that were classified differently in the computed
classification to the land use data.

3 INTEGRATION WITH A BUSHFIRE SPREAD SIMULATION MODEL

3.1 Fuel attributes for fire spread prediction

Empirical rate of spread models used in Australia are developed for a specific type of vegetation. As a result
the primary fuel attribute required to determine the most appropriate rate of spread model for simulation is

260



C. Miller et al., Integration of Remote Sensing Data with Bushfire Prediction Models.

vegetation type. This then dictates subsequent fuel attributes necessary to run the model. Subsequent fuel
attributes may include: age since last fire, horizontal and vertical continuity, height, amount, moisture content,
ratio of live to dead material, fuel particle size distribution, and ratio of fuel cover to no fuel.

For many years formally developed models existed for only two fuel types: dry eucalypt forests and open
grasslands (Luke and McArthur, 1978). While this number has increased over the years (see Cruz et al.
(2015)), for the purposes of this paper we restrict our analysis to identification of these two fuel types.

3.2 Integration with the Spark bushfire model

Spark (Hilton et al., 2015; Miller et al., 2015) is a simulation framework that models the spread of a bushfire
perimeter across a landscape. A bushfire spread simulator traditionally consists of two different sub-models:
a propagation model that expands the two dimensional fire perimeter in time according to some speed, and
a rate of fire spread model that determines the one dimensional speed in the direction of the prevailing wind
given a set of fuel and weather conditions (Sullivan, 2009b). Though physical models for fire spread do exist,
in order to allow swift computation, empirical models are used for the rate of spread (Sullivan, 2009a).

Spark uses the level set method for the propagation model and enables the use of any rate of spread model. A
key advantage of using a level set method is its ability to inherently deal with discontinuities in the spatial data.
Therefore, there is no need to consider this potential complication when processing data for classification. As
the propagation method is independent of the selected rate of spread model, rate of spread can be user defined
and therefore potentially formally published or conceptual in nature. Spark allows definition of multiple spread
models and the locations for which each model is applicable are dictated by a ‘classification grid’ input which
references the appropriate model by numerical index. As vegetation dictates the particular rate of spread model
used, the methodology we demonstrate is used to produce this classification grid input to Spark.

There are also a number of alternate bushfire spread simulation models that exist both in Australia and inter-
nationally. As OpenCV is an existing component of Spark, it is simple to directly integrate the classification
process into the framework. The methodology, however, is also applicable to other fire simulation tools.

4 CLASSIFICATION RESULTS

The KM algorithm was run with each Landsat band individually for all test parameter values given in Table 1
in order to determine useful values for consequent classifications. All classifications were run on a standard
desktop machine with Intel Core i5 processors. On average, computational time was linearly proportional
to the number of clusters; taking 9s for 4 clusters and 165s for 100 clusters. Times were similar across the
different execution attempt counts and centre initialisation techniques. The accuracy of water classification was
also similar over the execution attempt counts. Using 4 clusters gave higher water classification accuracies,
97% compared to 92% for 10 or more, while the different centre initialisations varied by just 1%; with 93% for
AV and 94% for random. However, using AV centres and using 10 or more clusters produced lower amounts of
misclassification of water. In the case of the higher cluster counts this was quite a significant difference from
38% misclassification to 16%, and using AV centres decreased misclassification to 18% from 22% for random.
Compactness had little dependence on execution attempts or centre initialisation, however it was significantly
better as cluster count increased from 4 to 10, and then again from 10 to 50. The selected values, shown in the
right column of Table 1, were chosen as a compromise between computational time and accuracy.

Five different workflows, as specified in Section 2.2, were tested. All possible combinations of bands were run
as both direct input into the KM algorithm, and also through a PCA with both the first and top three principal
components input into the KM. Directly into the KM the computational times ranged from 92s for two bands
up to 129s for all seven. With the PCA times were similar over the different bands, around 63s for one principal
component and 92s for three. Ground height, slope, and aspect were each used individually alongside the first
principal component, as was the local variation of the principal component. Computational times increased
to 89s with the ground height, aspect, or slope, and 111s with local variation, which included computing the
variation for each pixel.

By qualitative assessment no band combination was considered sufficiently accurate in all workflows, but the
six combinations that were sufficient for all but one were: bands 3/6, bands 1/3/6, bands 2/3/6, bands 2/4/6,
bands 2/3/6/7, and bands 3/4/6/7. In terms of the topography the slope and aspect data sets produced the most
useful classifications. Although urban areas were defined within the land use data set, there was not enough
urban pixels within the image for any of the classifications to find as a majority. Hence only the three classes
of water, forest, and grass were output for these classifications.
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Figure 2. Results from the classification using the first principal component of a PCA on bands 1, 3, and
6 combined with the variation of the component. Shown here are: the original land use image (left), the
categorised output with red as water, yellow as grass and green as forest (centre), and the difference between
the original land use and the categorised output (right) where white indicates the classes were the same and
black that they were different.

Once the consistently effective bands were detected, the difference between the classified image and the land
use image was determined. This was calculated as the percentage of pixels that were classified differently to
the land use image. The best combination was found to be bands 1, 3, and 6; the coastal aerosol, green, and
SWIR 1 bands. This produced the overall lowest difference of 8.6%, with variance as an input, as well as the
lowest on average using the different workflows at 9.0%. We note that 3.1% of the image was urban and hence
accounts for around a third of the difference. The results of this classification are shown in Figure 2 along with
an image showing the regions for which the classes were different. The largest difference value found from the
selected classifications was 9.2%. The best workflow was found to be the variation in combination with the
PCA, producing the lowest differences of all the different combinations and workflows, with 8.7% on average.
The standard KM was next at 8.9%, followed by aspect at 9.1%, and then slope and the two PCA workflows
all sitting between 9.1% and 9.2%.

5 CONCLUSION

The classification methods demonstrated in this paper are the first step towards the goal of using satellite
imagery data as input to fire simulations. We have validated that it has the potential to provide a model with
information on the vegetation type occurring within a region. The methods were developed within the same
framework as Spark such that they can be easily incorporated into the modelling framework. The optimal
inputs to the K-Means algorithm were; the first component of a PCA analysis on the coastal aerosol, green,
and SWIR 1 bands and the local variation of this component. The calculated accuracy of this classification
was 91% for this region. A third of the misclassification was due to the algorithm not having enough urban
data available to define an urban class.

The next steps to providing the most useful simulation inputs are to produce appropriate vegetation information
to provide a training set for a supervised algorithm and compare this approach to the unsupervised method.
Once the optimal classification method has been determined, it will be possible to produce more detailed fuel
properties appropriate to the relative vegetation classes. With more work, this methodology has potential to
provide immediate, up to date fuel information on any region in Australia to bushfire models. This will result
in a capability to run simulations immediately from the satellite data, and hence with almost no manual effort.
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