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Abstract: The spread of bushfire is highly sensitive to wind speed and direction. Consequently, strong varia-
tion of wind fields over areas of complex terrain, with multi-scale changes in topography and surface rough-
ness, significantly complicates the prediction of bushfire behaviour. In the current suite of operational fire
modelling schemes, mesoscale variations in wind fields are often over-simplified, thereby reducing the ac-
curacy of fire behaviour modelling in areas of potentially volatile or dangerous fire behaviour. To address
this issue, emerging fire modelling frameworks are using ensemble-based approaches to accommodate for the
inherent uncertainties in the factors influencing fire behaviour. To account for the effects of wind variability
within ensemble approaches it is necessary to recast wind field information in probabilistic terms.

As part of an investigation into a probabilistic representation of wind field information, the mountainous
region west of Canberra is used as a case study. In particular, analysis is focussed on Flea Creek Valley
within the Brindabella Ranges. The valley runs in a north-south direction, approximately perpendicular to
the dominant west-north-westerly (WNW) prevailing wind direction. Flea Creek Valley, and much of the
surrounding region, was heavily burnt during the 2003 Canberra bushfires but the region has since experienced
no major fire activity. In 2007 and 2014, wind data were collected across a 3-4km east-west transect of Flea
Creek Valley.

To statistically characterise wind fields across complex terrain, the directional response of surface winds to
changes in prevailing winds is considered as a toroidal, or bivariate circular, probability distribution. To con-
struct these distributions, wind direction measured on the ridge top (indicative of the prevailing winds) is
plotted against the concurrent wind direction measured within the landscape. Discrete observed directional
response distributions are taken as noisy realisations of continuous underlying distributions of wind direction
response. These continuous distributions can be estimated using a number of mathematical techniques includ-
ing cubic or thin plate smoothing splines. Both the observed discrete and estimated continuous distributions
highlight the modal nature of wind direction response across the landscape. Understanding the impacts of vari-
ables such as surface roughness on this directional response is an important step towards spatially extending a
statistical characterisation of wind fields across complex terrain.

To discern any changes in the probabilistic response caused by changes in surface roughness due to vegeta-
tion regrowth, a number of mathematical and statistical comparison techniques are available. In this paper,
techniques from astronomy, biometrics and statistics are employed to investigate the effects of seven years of
post-fire vegetation regrowth on the directional response of surface winds across Flea Creek Valley.

The findings of this study suggest that the choice of statistical test as well as smoothing technique can have
a significant impact on the results. Despite this, there is also evidence that the wind response across Flea
Creek Valley may have been significantly altered by regrowth in some areas, but in other areas no significant
difference is found. There are important implications here for wind and fire modelling, and it is clear that
there is much more work to be done to better understand the impacts of physical variables on the probabilistic
characterisation of wind fields.
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1 INTRODUCTION

The spread of bushfire is highly sensitive to wind flow. Sudden changes in wind speed and direction can cause
unpredictable changes in fire behaviour. Over areas of complex terrain, multi-scale variations in topography
and surface roughness significantly complicate the accurate prediction of wind fields (e.g. Finnigan, 2000).
In current operational fire modelling schemes, mesoscale variations in wind fields are often over-simplified,
reducing the accuracy of modelling in areas of potentially volatile or dangerous fire behaviour (Tolhurst et al.,
2008). To address this issue, emerging fire modelling frameworks are using ensemble-based approaches to
understand the inherent variabilities in fire behaviour (French et al., 2013). A probabilistic approach to wind
modelling would be well suited to these new fire modelling frameworks, and complement current models to
enhance discussions of uncertainty and ‘what-if’ or ‘worst-case’ bushfire scenarios.

To develop a probabilistic understanding of wind variability over complex terrain, the response of surface
wind direction within complex terrain to changes in the prevailing wind direction is represented as a toroidal,
or bivariate circular, probability distribution (Gross and Wippermann, 1987; Whiteman and Doran, 1993;
Sharples et al., 2010). Furthermore, understanding the impacts of variables such as surface roughness on these
wind direction response distributions becomes an important step in developing a statistical characterisation
of wind flow using physical parameters, and extending this characterisation across the landscape. To capture
the changes in distribution caused by changes in surface roughness, a number of comparison techniques are
available from the mathematical and statistical literature (Peacock, 1983; Bowman, 2006; Wang and Ye, 2010).

For the case study outlined in Section 2, wind direction response distributions are constructed for four points
across a valley transect. Two sets of these distributions are constructed; the first using 2007 data and the second
using data from 2014, after seven years of post-fire vegetation regrowth. At each of the four points in the valley,
the response distributions from each year are compared using three non-parametric comparison techniques to
test for statistically significant differences. This comparison rigorously builds evidence to support whether or
not post-fire regrowth has significantly impacted wind direction response across the case study region.

2 CASE STUDY

In 2003, much of the region west of Canberra was heavily burnt by devastating bushfires; since this time
there have been no major fires in the area. In 2007 and 2014, wind direction data were collected in Flea Creek
Valley, which runs north-south through the Brindabella Ranges, west of the ACT. The 2007 data were analysed
by Sharples et al. (2010) and the data collected in 2014 are presented here for comparison. Wind direction
response distributions were constructed using data from four points across a 3-4km east-west transect of the
valley for both years. Table 1 describes the location of each of the four points across the valley as well as the
differences in vegetation between the two sample years. Figure 1 permits a visual assessment of the differences
in vegetation across the valley between the two years.

Table 1. Weather stations in Flea Creek Valley, with vegetation descriptions from 2007 (Sharples et al., 2010)
and 2014.

Location 2007 Vegetation 2014 Vegetation
Point 1 East-facing, steep slope. Lee-

ward to the prevailing WNW
winds.

Sparse Eucalypt regrowth. Some taller
trees, some with cambial growth. Par-
tially intact canopy overhead.

Intermediate foliage. Some large trees.

Point 2 Valley floor, flat terrain. Some burnt trees. Scattered canopy
overhead.

Medium density canopy surrounding
station. Dense scrub up to 1m.

Point 3 West-facing, mid slope. Sta-
tions were in similar but not
identical positions between
years.

Very dense (dead) bracken. Some larger
trees. Some with cambial growth.
Sparse canopy overhead.

Little to no scrub. Some tall trees. Areas
of dense cambial growth.

Point 4 West-facing, steep slope.
Windward to prevailing WNW
winds.

Very sparse acacia regrowth and
bracken. Some large eucalypts. Rela-
tively sparse canopy overhead.

Scrub up to 2m high. Large trees sur-
rounding station with cambial growth.

The wind direction response distributions show the densities of concurrent prevailing wind directions measured
on the ridge top and surface wind directions measured within the valley. Wind direction was recorded in
22.5◦ bins, corresponding to the 16 points of the compass, so the observed wind response distributions were
represented as 16 × 16 discrete bivariate distributions. These discrete distributions were considered to be
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(a) (b)

Figure 1. Photographs of vegetation in Flea Creek Valley in (a) 2007 and (b) 2014.

noisy realisations of underlying smooth continuous distributions. For the set of observed wind direction pairs,
Xij = (φi, ψj), where φi is the wind direction measured on the ridge top andψj is the wind direction measured
in the valley, a model was proposed;

Yk(Xij) = mk(Xij) + εk(Xij). (1)

For each year k = {2007, 2014}, Yk is the observed wind direction distribution, mk is some underlying
continuous distribution and εk is a random noise component. A thin plate smoothing (TPS) spline method
was used to estimate the underlying continuous surface, mk. The TPS spline method allowed for a trade-off
between data fidelity and smoothness of the surface to account for the inherent noise in the observations. A
cubic spline was also used to estimatemk. This exact interpolation method was more computationally efficient
than the thin plate smoothing spline, but could exaggerate noise from the data. Both methods ensured that the
toroidal nature of the surface was maintained during estimation (Quill et al., 2015).

The estimated continuous distributions were realised on a 360 × 360 grid, equivalent to 1◦ intervals around
the compass. Figure 2 shows the estimated continuous wind direction response distributions using the TPS
spline method for the four points across Flea Creek Valley in both 2007 and 2014. It is apparent that there
are some similarities between the surface pairs, such as the number of modes across each surface. However,
there also appear to be some differences, including the shape and density of some modes as well as shifts in
modal locations. Seven years of undisturbed post-fire regrowth has occurred in Flea Creek Valley between the
two sample years but, for all but one pair, the sampling locations have remained identical. The investigation
in this paper addresses whether the observed differences in wind direction distributions are caused by these
vegetation changes.

3 METHODOLOGY

In order to understand the impacts of the post-fire vegetation regrowth on the wind direction response distri-
butions from Flea Creek Valley, statistical comparison techniques are used to determine whether the apparent
differences observed between the two years (Figure 2) are statistically significant. Given the model in (1) for
k = {2007, 2014}, the following hypotheses are proposed:

H0 : m07(Xij) = m14(Xij),

H1 : m07(Xij) 6= m14(Xij).

The null hypothesis assumes equality between the two distributions, suggesting that the vegetation regrowth
has had no significant impact on the directional response of wind flow. While the alternative hypothesis posits
inequality between distributions, and a significant impact on wind direction response across the valley caused
by regrowth.
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Figure 2. Estimated continuous wind response distributions for four points along the transect of Flea Creek
Valley in 2007 and 2014.

If the wind direction responses are considered as a probability distribution function, there are a number of
parametric and non-parametric tests available to test the above hypotheses. The wind direction response distri-
butions can also be thought of as surfaces or images, where each cell has a value. Non-parametric techniques
from areas such as bioinformatics can be used to measure the average difference between the values across each
surface. For this study, the wind response distributions are compared using an extension of the Kolmogorov-
Smirnov test for equality between probability distributions (Section 3.1) and two non-parametric comparison
tests for equality between surfaces (Section 3.2).

3.1 Extended Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test considers the difference between an observed dataset and a known prob-
ability density function. The test takes the maximum difference between the empirical distribution function
(EDF) of the observed dataset and the theoretical cumulative distribution function (CDF) of the known distribu-
tion. The test can also be used to compare two observed datasets by considering the two empirical cumulative
distributions. The univariate KS test is well-known and commonly used in fields of research such as astronomy
(Peacock, 1983). The test is highly efficient, distribution-free and invariant to the ordering of the CDF.

Peacock (1983) extended the univariate KS test to the bivariate case, and showed it to again be efficient
and sufficiently distribution-free for practically useful cases. The extended KS test becomes invariant to the
ordering of the CDF by constructing the test statistic based on the maximum differences between all possible
CDFs over the bivariate space. In the bivariate space, the CDF can be defined in four directions; Q1 = (x ≤
X, y ≤ Y ), Q2 = (x ≤ X, y ≥ Y ), Q3 = (x ≥ X, y ≤ Y ) and Q4 = (x ≥ X, y ≥ Y ). The test statistic
for the extended KS test becomes the maximum of the maximum difference between CDFs defined in each of
these directions.

For a comparison of a single sample, with n data points, to a known distribution of the variables X and Y , the
test statistic is defined as (Gosset, 1987);

Dn = max(DQ1
n , DQ2

n , DQ3
n , DQ4

n ), (2)

where DQ
n defines the maximum absolute difference between the CDFs of the sample and the known distribu-

tion constructed over each direction, for example

DQ1
n = sup

(x,y)

|FQ1
n (x, y)− FQ1

X,Y (x, y)|, (3)

where FQ1
X,Y (x, y) = P (x ≤ X, y ≤ Y ). Since this statistic, Dn, is assumed to be proportional to

√
n, an

adjusted statistic is used;

Zn =
√
nDn. (4)
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The asymptotic behaviour of Zn is given by Peacock (1983);

P (Z∞ > z) ' 2 exp(−2(z − 0.5)2). (5)

To compare two sample datasets with sizes n1, n2 & 10, Peacock (1983) defines;

n =
n1n2
n1 + n2

. (6)

In this study, two observed datasets are compared, and so the Kolmogorov-Smirnov test statistic is calculated
using the empirical distribution functions (EDFs) from the observed discrete datasets. The p-values for the test
are derived from (5). For each test, the value of Zn is also compared to the critical values derived by Peacock
(1983) and given in Table 2.

Table 2. Relevant critical values of Zn given in Peacock (1983).

Significance Levels
n 0.20 0.10 0.05 0.01
... ... ... ... ...
50 1.57 1.71 1.83 2.06

3.2 Non-parametric Surface Comparison Tests

The wind direction response distributions can also be thought of as surfaces or images, where each pixel or
cell has a value. In this case, two non-parametric surface comparison tests are used to compare the estimated
continuous surfaces from 2007 and 2014. The first test is developed using the methodology described by
Wang and Ye (2010). This was developed to compare medical images and test for significant changes due to
treatment. The test statistic is derived from the mean squared difference between the sample values across the
surfaces;

TW =
1

n

∑
ij

{m̂07(Xij)− m̂14(Xij)}2 (7)

where n is the number of data points.

The second test statistic is defined by Bowman (2006) and was used to test the difference between two air
quality datasets. The test statistic takes the difference between each surface m̂k and the surface constructed
using both datasets under the null hypothesis of equality, m̂;

TB =
1

2

∑
ijk

{m̂k(Xij)− m̂(Xij)}2 (8)

for k = {2007, 2014}.
To calculate the p-values for these tests, the distributions of the statistics under the null hypothesis are con-
structed using Monte Carlo simulations. The errors, εk(Xij), are assumed to be homoscedastic across the
wind response distributions so bootstrap re-sampling is used within each Monte Carlo simulation.

4 RESULTS AND DISCUSSION

Table 3 shows the p-values given by each comparison test for each pair of wind direction response distributions
between 2007 and 2014. Table 2 shows the critical values derived by Peacock (1983) for comparison with the
observed Zn statistics also given in Table 3. Peacock (1983) only empirically derived the critical values up to
a sample size of 50, so these values only serve as an indication since the sample sizes here are n1 = n2 = 256.

It is clear from Table 3 that according to the extended KS test all of the pairs are significantly different, with
very small p-values. Although the comparison of the Zn statistics with the critical values in Table 2 can not
be absolute due to the differing sample sizes, the statistic values are significantly larger than those given and
so the null hypothesis of equality between surfaces is rejected for all points across the valley.
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Table 3. Results of KS test between wind response surfaces from 2007 and 2014. For the KS test, both the
p-values and observed test statistics are shown. For the non-parametric comparison tests, the p-values are
shown for both surface estimation techniques.

KS Test TW TB
Pf Zn Cubic TPS Cubic TPS

Point 1 1.46× 10−9 3.7434 0.0140 0.0000 0.1070 0.0000
Point 2 2.57× 10−7 3.3166 0.0001 0.0000 0.3820 0.0020
Point 3 2.06× 10−19 5.1752 0.0020 0.0000 0.0770 0.0000
Point 4 8.28× 10−20 5.2239 0.0380 0.0010 0.1490 0.0010

For both non-parametric tests applied to the TPS spline, very small p-values are shown across all points. This
again suggests that all pairs are significantly different. However, the results of both non-parametric tests on the
cubic spline surfaces provide a different story. For the TW test, Point 1 and Point 4 show the highest p-values,
suggesting less evidence against equality, and for the TB test, the same points also show high p-values. Across
both test statistics, Point 3 shows small p-values providing evidence against equality. This is to be expected
since the two stations of this point were not in the same location in each year and the distributions in Figure 2
are visually very different.

The findings from both tests on the TPS surfaces could be a result of disproportionate weight being given to
the small differences between surfaces away from the modes of the distributions. Under the cubic spline, these
areas are mostly zero so the differences are also zero.

For the cubic spline surfaces, there are similar patterns shown between the results from both tests. However,
there is a distinct difference between the magnitude of p-values given by each test, which may be caused by
their constructions and applications. For instance, TW was constructed to compare medical images and so
be highly sensitive to changes in pixel values, while TB may not need to be as sensitive when considering
environmental variables.

The results for Point 2 also highlight the influence of statistic construction on the results. Under TW , Point 2
shows the smallest p-value, while under TB the point gives the highest p-value. The two surfaces from 2007
and 2014 exhibit significant variation and less distinctive modal patterns than the other three pairs (Figure 2).
The differences taken between the two surfaces, i.e. for TW , would therefore be relatively large, producing
a small p-value and suggesting inequality. Whereas, the difference taken between each surface and their
combined surface, i.e. for TB , would be smaller across the entire surface than if the modes showed less
variation. In this case, the p-value is therefore large. The large p-value suggests there is not enough evidence
against the null hypothesis to reject the assumption of equality between the two wind response surfaces.

5 CONCLUSIONS

Initial results from three different statistical comparison tests show that the choice and construction of the
tests themselves, as well as the surface estimation techniques, can have a significant impact on the findings.
The small p-values shown across the KS test suggest that all surface pairs are not equal and thus the post-fire
vegetation regrowth has had a significant impact on wind direction response in Flea Creek Valley. However,
further investigation into the critical values of the test under large sample sizes is required to validate this
conclusion.

The results of the non-parametric tests applied to continuous surfaces estimated by the thin plate smoothing
spline method also suggest that the post-fire vegetation regrowth has had a significant impact on wind direction
response across Flea Creek Valley. These results are, however, likely due to a disproportionate weighting
towards extremely small differences across the estimated surfaces as opposed to the zero differences shown
when applied to the cubic spline. This issue could be investigated further through applying some weighting to
the differences around modes of the distributions, or defining a cut-off where extremely small surface values
are taken to be zero.

The results of the non-parametric tests applied to the cubic spline surfaces provide a more interesting story;
suggesting that at places across the landscape, particularly on the steep lee and windward slopes, the increased
vegetation has had no significant impact on the directional response of wind flow. The choice of test statistic
still significantly influences these results and further investigation is required to consider the mechanics of all
three tests. However these initial results should serve to indicate the importance of physical parameters in the
development of statistical models of wind direction response distributions for use in fire modelling.
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6 FURTHER WORK

It is clear that further investigation into the application of these statistical techniques to wind direction response
distributions is required to verify these initial findings. In addition, there are a number of ways this study can
progress towards the statistical characterisation of wind fields over complex terrain;

• Since all the tests used in this study consider the differences across the entire surface or distribution,
the results give a view of the broad scale differences in wind direction response distributions without
providing any further details on how and where the surfaces or distributions differ. Analysis of the sensi-
tivity of the tests to known changes in modal location and spread will help to understand the mechanics
of each test in the context of wind response distributions as well as enable better interpretation of the
results.

• To further investigate the differences in wind direction response distributions, parametric tests will also
be appropriate. For instance, it is meaningful to define the location, density and spread of each mode on
the surface, and compare how these parameters have changed between the two years. This will identify
how growth in vegetation has shifted the response of wind flow in the valley to specific prevailing winds.
The shifts in modal spread or variability will also help to indicate potential changes in predictability or
uncertainty with increased vegetation growth.

• In the context of fire modelling, a quantification of the impacts of vegetation regrowth on wind direction
response will build into the probabilistic characterisation of wind fields across complex terrain. Further
studies have begun to enable some quantification of vegetation across a landscape and so analyse the
quantitative relationship between vegetation cover and wind direction response distributions.
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