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Abstract: This study explored the possibility of estimating nitrogen content in a pasture grass using 
thermal images and artificial neural networks (ANN), based on the premise that plant herbage with a higher 
N content would be absorbing more light energy for active photosynthesis, therefore emitting excess energy 
as heat.  This is the first reported study to use thermal infrared images and ANN to estimate pasture nitrogen 
content under different conditions of nitrogen (N) fertiliser. The research was conducted in a controlled-
climate environment to isolate the effect of a key environmental parameter, available soil N, on pasture grass 
herbage temperatures. The project was the first step towards developing a smart fertiliser spreader to manage 
N applications based on plant temperature. 

A small glasshouse pot experiment was conducted to determine the degree of the correlations between leaf N 
content and the surface temperatures of perennial ryegrass (Lolium perenne) herbage. Using a thermal 
imaging camera, periodic measurements of the herbage surface temperatures were made in conjunction with 
herbage cuts and analysis of grass dry matter for % N content. At the same time, other environmental factors, 
such as air temperature and humidity, were also measured. 

As data constituted the core of the study, the database should be flexible, accessible and simple, for both data 
entry and data analysis. Subsequently, an ANN model was developed to predict N content based on herbage 
temperatures and the other factors measured. The final ANN model was developed based on three input 
variables: plant temperature, number of days after planting, and number of days after the last nitrogen 
application, with an error margin of ± 0.93 and ± 0.87 %N for the training and validation data, respectively. 
Comparing actual and predicted data showed that the ANN model could be fitted to pasture nitrogen content 
and accounted for around 84% and 92% of the variance in the training and validation data, respectively. The 
outcome of this study will aid the development of technology for estimating nitrogen content of perennial 
ryegrass (Lolium perenne) under field conditions which was seen as critical in the design of an advanced 
fertiliser spreader to manage nitrogen application on farms.  
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1. INTRODUCTION 

The invisible radiation patterns of objects, when converted into visible images, are called thermal images 
(Ishimwe et al., 2014). Thermal sensors are used to obtain thermal images of any object for quantitative 
studies of different properties, such as those related to growth, yield and adaptation to biotic (disease, insects) 
or abiotic (drought and salinity) stress  (Li et al., 2014). Thermal imaging systems comprise a thermal camera, 
a signal processing unit and an image acquisition system (Fitzgerald et al., 2006). 

Due to their simple operational procedures, thermal imaging systems are widely used in many fields, such as 
agriculture, civil engineering, industrial maintenance, aerospace, medicine, pharmacy and veterinary science 
(Vadivambal & Jayas, 2011). In fact, thermal imaging can be used to study the geometry and morphology of 
any agricultural material and process where heat is emitted or lost in space and time (Hellebrand et al., 2006). 

The principle behind thermal imaging use was described well by da Luz and Crowley (2010) and (Tilling et 
al., 2007). The thermal properties of plant leaves are determined by internal leaf structures, which contain a 
certain amount of water per unit area (Hu et al., 2011). Plant chemical and spectral properties change with 
nutrients and water deficiency status (Fitzgerald et al., 2006). Thus, it is possible to judge the freshness status 
of different leaves and the nutrient content of various crops with thermal images. Use of reflected light to 
measure nitrogen (N) and water status has been well described by Blackmer et al. (1994), Gao (1995), 
Osborne et al. (2002) and Penuelas et al. (1993). 

Thermal imaging provides rapid identification of crop N status (Al-Abbas et al., 1974; Schepers et al., 1996; 
Thomas & Gausman, 1977). The response of a crop to N fertiliser applications is mostly dependent on plant 
available water. Therefore, it is essential to match N supply with spatial and temporal soil water availability, 
for which regular monitoring of plant available water and crop N status is essential (Tilling et al., 2007). This 
would allow targeted N applications only to areas of the crop with N stress (deficiency) but with sufficient 
plant available water. Modern thermal imaging techniques with high resolution allow for the visualisation of 
multi-dimensional and multi-parameter data (Li et al., 2014). The use of thermal imaging techniques gives 
insight into dynamic responses to N applications and water stress (Li et al., 2014). Thus, thermal imaging 
provides relevant information for real time irrigation scheduling and the measurement of N concentrations 
(Fitzgerald et al., 2006).  

Different spectral imaging technology has have been used to research N content in different plants. For 
example, Cabrera-Bosquet et al. (2010) used near infrared reflectance spectroscopy (NIRS) to predict the N 
content in maize grown under different water treatment conditions. The NIRS reflected genotypic differences 
in N content under each water treatment, confirming that NIRS can be used to predict N in maize to improve 
nitrogen and water use efficiency. Nguyen and Lee (2006) used hyperspectral canopy reflectance (300–1100 
nm) data recorded at various growth stages to develop a model for assessing N status in rice. The results 
revealed that an acceptable and accurate model can be developed using hyperspectral canopy reflectance data 
to predict N concentration and N density in rice. Tilling et al. (2007) used thermal imaging to quantify the N 
status of wheat under irrigated and rainfall conditions, at different levels of N application. Thermal images 
indicated that the mean plot temperature of rain-fed wheat was 6.5˚C and this was 2.7˚C warmer than the 
irrigated treatment during years 2004 and 2005, respectively. Apart from irrigation supply and plant cover, 
the plot temperature was also affected by N treatment, with lower temperature images at increased levels of 
N application (Tilling et al., 2007). 

Haboudane et al. (2002) state that light reflected by plants is predominantly influenced by the chlorophyll 
present in the leaves, which has been found to relate to the concentration of leaf N. Measurement of reflected 
energy from crop leaves and canopies is, thus, an estimate of chlorophyll concentration and N concentration 
of the leaf. However, to a certain extent, plant cover, plant size, plant age, and leaf angle also affect the 
reflection of light from the plant leaf. Fitzgerald et al. (2006) claims that responses to applied N will be 
greater if the plant has low water stress. Under a non-limiting soil moisture content, a N deficiency would 
induce stomatal closure in different crop species, such as beans, wheat, sugar beets, maize, groundnuts 
(Shimshi, 1967).  

A nitrogen deficiency can be determined by analysing the different colours in thermal images. For example, 
in fluorescence images, a higher blue-green, higher Chl-F at 690 nm (Corp et al., 2003; Heisel et al., 1996) 
and reduced chlorophyll concentration indicates a nitrogen deficiency (Liu et al., 2000). Different crops 
respond differently to different amounts of nitrogen fertiliser use (Costa et al., 2013). According to Chaerle et 
al. (2007), thermal imaging of spring barley indicated a higher canopy temperature in crops subjected to no N 
fertiliser use compared to those receiving 165 kg N ha−1 use. However, the opposite was true for wheat plants 
(Tilling et al., 2007). Following the principle underlying chlorophyll florescence analysis (Maxwell & 
Johnson 2000) that light energy absorbed by chlorophyll molecules in a leaf can undergo three fates: 1 – 
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energy utilised to drive photosynthesis, 2 – excess energy dissipated as heat, or 3 – re-emitted as light-
chlorophyll fluorescence,   It was hypothesized that plant herbage with a higher N content would be 
absorbing more light energy for active photosynthesis, therefore emitting less excess energy as heat. More 
research is needed in this area to ascertain the degree of the link between plant leaf temperature and leaf % N 
content (a function of available N supply). 

Artificial neural networks (ANN) are becoming a common tool for modelling complex input-output 
dependencies (Parten et al., 1990; Safa & Samarasinghe, 2013; Samarasinghe, 2007). ANNs learn the link 
between the input and output variables by studying previously recorded data (Kalogirou, 2000). Therefore, 
the size and accuracy of the data sample is the critical part of the model, because without enough samples, 
ANNs cannot create the correct connections; sample sizes can vary from just a a few up to thousands in 
complex projects. The benefits of using ANN models are the simplicity of application and the robustness of 
the results. ANNs have developed into a powerful approach that can approximate any nonlinear input-output 
mapping function to any degree of accuracy and in an iterative manner. ANNs have many attractive 
properties for modelling complex production systems. Some of these are: universal function approximation 
capability, resistance to noisy or missing data, accommodation of multiple non-linear variables with 
unknown interactions, and good generalisation ability (Hagan et al., 2002). 

2. METHODS 

This is the first reported study to use thermal infrared images and an ANN model to estimate nitrogen content 
in pasture. A small glasshouse pot (33 cm*42 cm) experiment was conducted to determine the degree of the 
correlation between leaf N content and the surface temperature of perennial ryegrass (Lolium perenne) 
herbage. The study was developed in a controlled environment to isolate the effect of soil N supply on the 
herbage leaf surface temperature. Using a thermal imaging camera, periodic measurements of herbage 
surface temperatures were made in conjunction with herbage cuts and herbage dry matter analysis for % N 
content. At the same time, other environmental factors, such as humidity and air temperature, were measured. 
The pots were watered daily and the plant temperature was measured one hour after watering the pot to 
minimise the effect of soil moisture on plant temperature. In this study a Flir E30 thermal camera with 
spectral range between 7.5 and 13 µm were used to measure the plant temperatures. 

Ryegrass plants were established at a population rate of 1000 plants per m2 in a no-N soil medium (138 
plants per pot). Three soil N treatments were created by spreading urea onto the soil medium surface at rates 
equivalent to 50, 100, and 300 kg N/ha. Periodic measurements of the surface temperature of the herbage 
were made using a mobile platform from which infrared measurements of the herbage temperature were 
made from 1 m above the pots. The emissivity value of thermal images was selected as 95%.  

For data analysis, the thermal images were analysed using Flir software to find the average temperature of the 
leaves (Figure 1). The soil surface temperature would change the accuracy of the data measurement, 
therefore, only the average temperature of the areas covered by plants were measured. As data constituted the 
core of the study, the database should be flexible, accessible and simple for both data entry and data analysis. 
Subsequently, after five monthly herbage cuts, an ANN model was developed to predict leaf N content based 
on herbage temperatures and the other factors measured. In this study, N fertiliser was applied twice as urea. 
The first application was 15 days after ryegrass seedling emergence, and the second application was three 
months after the first N application. 

In most studies, a feed-forward multi-layered perception (MLP) paradigm, consisting of one or more inputs, 
hidden layers and an output layer trained by back propagation learning method (BP), have been used 
(Heinzow & Tol 2003; Hornik et al., 1989; Jebaraj & Iniyan, 2006). In the processing of inputs by the 
network, each neuron in the first layer (hidden layer) processes the weighted inputs through a transfer 
function to produce an output. The transfer functions may be a linear or nonlinear function. Some popular 
transfer functions include: Logistic, Hyperbolic-tangent, Gaussian and Sine. The output of a neuron depends 
on the particular transfer function used. This output is then sent to the neurons in the next layer through 
weighted connections and these neurons complete their outputs by processing the sum of the weighted inputs 
through their transfer functions. When this layer becomes the output layer, the neuron output becomes the 
predicted output.  

Weights are adjusted to minimise the mean square error (MSE) between the predicted outputs and targets. 
The MSE, the most commonly used error indicator of the prediction over all the training patterns for a 
network with one output neuron, can be written as:      
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Figure 1. Thermal image of a pot before a 
monthly herbage cut. 
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where ti and zi are the target and the predicted output for the ith training pattern, N is the total number of 
training patterns (Samarasinghe, 2007). The root mean square error (RMSE) is another error estimation that 
shows the error in the units of the target and predicted data. 

After several trials using Peltarion Synapse software, a modular neural network with two hidden layers was 
developed in this study. Quick Prop was used as the learning method because of its speed in reducing the 
errors and finding the best model. Quick Prop implicitly uses the second derivative of error to adjust weights 
(Equations 2, 3 and 4). In each iteration of Quick Prop, the update for the weights was regulated, as follows:  
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      (3)                                                                               

                 
      (4)                                                                                      

where Δwm is the current weight increment, dm is the 
average derivative of the error with respect to the 
weight for the current epoch m; and ∂E/∂wm is the 
current error gradient for a particular input vector 
(Samarasinghe, 2007).  

After testing different learning algorithms, neuron activation functions and network structures, a modular 
network with two hidden layers was developed, as shown in Figure 2. In the modular network structure, the 
model was characterised by a series of independent neural networks after the input layer, which operated on 
the inputs to achieve several subtasks of the task the network expected to perform. These subtasks were 
trained separately using different examples from the samples and their outputs were summed in the output 
layer. This structure of the model made it possible for the network to simultaneously use different neuron 
activation functions. In the final model, a Sine function was used for the input layer; a hyperbolic tangent 
function was selected for the output layer and the first hidden layer, and a logistic function was applied for 
second hidden layer (Figure 2). 

 

Figure 2. Structure of the modular network and number of neurons in each layer. 

3. RESULTS 
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model was estimated to be 0.41% N and 0.38% N for the training and validation data, respectively. This was 
the lowest RMSE between several ANN models examined in this study. As shown in Figures 3 and 4, the % 
N estimated by the ANN accounted for 93% and 94% of the actual variability in % N in training and 
validation data, respectively.  

 

Figure 3. Relationships between observed and predicted pasture nitrogen content (Training) using the 
artificial neural networks model. 

 

Figure 4. Relationships between observed and predicted pasture nitrogen (Validation) using the artificial 
neural networks model. 

As shown in Figure 5, the final model predicted pasture nitrogen content with an error margin of ±0.93 % N 
(training data). Comparing the training and validation data showed that the correlation between predicted and 
actual % N in both training and validation data were similar. It is recommended other input variables should 
be examined to improve the model under different conditions. There were several factors which could 
influence the final results; however, the result of this study was very encouraging and the final model can 
predict pasture nitrogen content with an acceptably low error.  
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Table 1. MSE and RMSE for training 
and validation ANN model 

 Training Validation 

MSE 0.166 0.143 

RMSE 0.407 0.379 

 

Figure 5. Predicted (dark-blue), observed (black), and the 95% confidence interval (grey region), for the 
pasture nitrogen content based on the artificial neural networks model (training data). 

4. CONCLUSIONS 

This study has shown it was possible to estimate nitrogen content of perennial ryegrass (Lolium perenne) 
herbage under different soil N fertility conditions in a controlled environment (glasshouse conditions). The 
results showed that an ANN model with basic input variables was 
capable of predicting pasture nitrogen content within acceptable 
errors. The accuracy of the data was a critical factor in developing 
a prediction model with a minimum margin of error. The final 
model predicted pasture nitrogen content (% N) based on plant 
temperature, number of days after planting, and number of days 
after the last nitrogen application with an error margin of ± 0.92 
and 0.87 % N for training and validation respectively. The main 
challenge of this method is collecting accurate data under farming 
conditions in the field. 

It is possible to use the hypothesis of the current project in an advanced precision farming project to reduce 
nitrogen consumption by using thermal images, artificial neural networks, and machine vision to improve 
fertiliser use efficiency. Adding other input variables, such as soil moisture, soil temperature, and air 
humidity, would improve the accuracy of the model. The study has great potential to reduce nitrogen 
consumption, farmers’ costs and environmental impacts on New Zealand dairy farms. 

The method used in this study can be developed for other plants and agricultural products. Future studies to 
compare other modelling methods and other input variables are strongly recommended. 
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