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Abstract: The last few years have seen an increasing interest in the development of high throughput pheno-
typing platforms (HTP) that allow the automated measurement of plant growth and structure. These platforms
have utilised various imaging technologies, including fluorescence imaging, thermal imaging, and visible
imaging. Since plants are structurally complex and inherently three-dimensional (3D), 3D imaging and re-
construction approaches have distinct advantages over 2D imaging when it comes to quantifying structural
information (such as leaf angle distribution, leaf area etc.).

High throughput phenotyping platforms, when combined with 3D image analysis, enable researchers to inves-
tigate complex functional traits related to plant structure, including responses to external and internal signals
or perturbations. Moreover, image-based reconstruction techniques are able to produce complex structural
models of both large and small individual plants, which retain colour information and are topologically coher-
ent.

In this paper, we present a computational workflow for analysing the growth of Arabidopsis thaliana rosettes
over time using stereo reconstruction. Stereo reconstruction for plant phenotyping generally includes data
collection and point cloud generation. In our approach, we not only use stereo image pairs to generate point
clouds of the plants but also reconstruct mesh surfaces for further analysis.

By applying a semi-global matching algorithm, 2.5D point clouds of Arabidopsis growing in trays with mul-
tiple plants were generated. Point clouds were then filtered and segmented in order to isolate single plants
using clustering methods. A variety of surface reconstruction methods were then used to generate meshes
from the point clouds. These meshes were analysed to quantify the plant dimensions and surface area in three
dimensions. The segmentation was stable over time and was used to generate a time series for the growth of
the individual plants over time.

The advantages of such a stereo reconstruction system are: i) the system is able to construct realistic point
clouds and meshes of the scene, ii) the processing pipeline is computationally efficient, iii) it allows stereo
reconstruction and segmentation of individual plants in trays of 20 plants each for high throughput analysis.
The overall approach proved useful in quantifying morphometric parameters in 3D for a set of Arabidopsis
accessions and relating plant structure to plant function.

Keywords: Stereoscopic reconstruction, 3D mesh, Arabidopsis, plant phenotyping, semi-global matching,
point-cloud filtering
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1 INTRODUCTION

Automated methods for measuring plant growth and performance in high throughput are necessary to under-
stand the genetics of plant development under different environments. These observations when linked to
genotype and environment information are a powerful tool to dissect the genetic architecture of traits. By
capturing the development of plants at high spatial and temporal resolutions, researchers can investigate plant
growth responses to external and internal signals non-destructively (Furbank and Tester, 2011). Since plants
are structurally complex and three dimensional in nature, 2D imaging methods based on single cameras suffer
from inaccuracies. For instance when using projected area as a surrogate for biomass or total plant surface
area, leaf areas are calculated without taking into account leaf angles. In contrast, one of the advantages of
using 3D meshes of the plants over 2D analysis is that it is more robust to leaf movement when determining
leaf area on a single plant basis. Moreover, parameters such as surface normal can be used to assess metrics
such as the orientation of single leaves. The drawback is that these approaches are often more time consuming.
They often require multiple cameras or multiple images captured from several different poses, and an accurate
knowledge of the camera intrinsic and extrinsic parameters.

In this paper, we present a new computational approach applied to the analysis of Arabidopsis thaliana rosette
growth over time using stereo reconstruction. Our approach relies on the integration of a number of vision-
based 3D reconstruction methods to enable the determination of characteristics of plants grown in seedling
trays. The paper is constructed as follows: Section 2 describes the background information and related work.
Our methodology is described in Section 3 and experimental results are presented in Section 4. Concluding
remarks and future approaches are discussed in Section 5.

2 BACKGROUND

Imaging technologies have been integrated into high-throughput phenotyping platforms to probe various as-
pects of plant structure and function (Granier et al., 2006; Paproki et al., 2012). Compared with other ap-
proaches, using images is amenable to automated quantification of individual plants. In particular, parame-
ters regarding plant growth, yield and stress responses can be more readily identified. At present, imaging
techniques for plant phenotyping primarily include fluorescence imaging, thermal infrared imaging, visible
imaging, spectroscopy and other techniques (MRI, PET and CT). As visible imaging is low cost, it is available
in commercial phenotyping platforms. It is primarily used to measure aspects of plant architecture includ-
ing projected surface as a surrogate for biomass, colour information to study profiles of leaf senescence, and
structural information (Li et al., 2014; Ivanov et al., 1995).

At present, 3D reconstructions for phenotyping platforms mainly focus on manipulating point clouds obtained
from 3D laser scanning technology in both field and laboratory environments. However, laser scanning pro-
duces sparse point clouds, without color information, that are difficult to filter for identifying plant structural
characteristics. Thus, the use of passive sensors (e.g. stereo cameras) have become increasingly important for
plant phenotyping (Lou et al., 2014; Kumar et al., 2014). Stereo reconstruction is achieved by capturing im-
ages from slightly different angles. The disparity between stereo pairs allows inference of depth information.
Based on the optimization method, stereo matching algorithms generally fall into two groups: local and global
matching. Local methods such as block matching use a sliding window to find the minimum matching cost,
like the sum of absolute differences (Sabater et al., 2011). However, it implicitly assumes that all pixels within
the window are at the same distance from the camera, leading to problems with object boundaries and discon-
tinuous regions. Global methods, on the other hand, make explicit smoothness assumptions of the disparity
map and minimise the cost function on a global basis, but are generally computationally expensive. Classic
algorithms of this type are Dynamic Programming (Kim et al., 2005), Graph Cut (Kolmogorov and Zabih,
2001) and Belief Propagation (Felzenszwalb and Huttenlocher, 2004). Semi-global Matching (Hirschmiiller,
2008) successfully combines the benefits from both groups and the algorithm is able to perform accurate image
matching at lower computational cost. Based on the disparity map generated by stereo matching and camera
calibration information, a point cloud can be generated by performing re-projection from 2D pixels to 3D
points.

The methods for surface reconstruction from point cloud can be categorized into three groups: region growing,
computational geometry and algebraic methods. Region growing algorithms use a progressive approach to
efficiently produce a polygonal surface. The implementation of the Greedy Projection in Rusu and Cousins
(2011) has been popular in this field. Among the computational geometry methods, Delaunay Triangulation
has been commonly used to interpolate the points and to try and fit the mesh into existing datasets. Power Crust
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(Amenta et al., 2001) is also a well-established method among this group. Unfortunately, the computational
geometry approaches are sensitive to noise or datasets with varying point density. The final group generally
uses an implicit function to approximate the surface normal, among which Hoppe’s method (Hoppe et al.,
1992), MPU (Ohtake et al., 2005) and Poisson reconstruction (Kazhdan et al., 2006) are favourites. These
algorithms have the main advantage of being robust to noise as well as varying point density. Given these
various advantages and disadvantages, our approach focused on combining approaches from the first and third
groups to reconstruct the surface of individual A. thaliana plants.

3 METHOD

In this section we describe the approach used to build an automated stereo reconstruction pipeline to analyse
the growth of A. thaliana rosettes over time using top down images from a stereo camera pair in a phenotyping
platform. The platform, namely “TrayScan”, enclosed 3 types of cameras mounted overhead in three stations:
a stereo RGB camera station with resolution of 5 mega pixels and a baseline of 62mm, a FLIR infrared
imaging station, and a pulse modulated chlorophyll fluorescence imaging station. We introduce our acquisition
methodology and describe the reconstruction process by using one tray with 20 individual pots of A. thaliana at
one time point (Arabidopsis-thaliana_Tray_0001-date-2014-07-17T11-48-30-round-001-003). The processing
pipeline described here was in fact used to process a dataset composed of 60 trays at 20 time points.

3.1 Stereo Reconstruction by Using Semi-global Matching

Our stereo reconstruction module is based on the semi-global matching method with the associated cost func-
tion given in Eq. 1:

E(D)=) (C(p.Dy)+ Y PT(D, Dyl =1+ Y BT[|D, — Dy| > 1]). (D)
P qeEN, qEN,

where E(D) is the global energy function for disparity map D. C(p, D)) is the matching cost of pixel point
p with the depth D,,. The second and third terms are the smoothing constraints. NV, is the neighbourhood of
pixel p. q represents the neighbourhood pixels of p in the image. P is the penalty on the disparity change
by 1 between neighbour pixels. P, is the penalty function for the disparity change by more than 1 between
neighbourhood pixels. T'[-] is a binary function giving 1 if the argument is true and 0 otherwise. Minimizing
the cost function is solved by performing multiple 1D minimization, and aggregating costs on multiple paths
according to Hirschmiiller (2008).

After images were rectified, pairs of stereo images were matched using semi-global matching. The disparity
map was generated along with the 3D point cloud for the whole tray. It is noted that stereo anaglyphs (Dubois,
2001) were generated in order to set the proper disparity range parameter for the matching algorithm. The
three dimensional accuracy of the point cloud generated from the pipeline was verified by using a test tray
without plants in it. It reached millimetre level accuracy in all three dimensions. Our test shows that camera
resolution is closely related to the density of the point cloud, thus affecting the quality of the mesh with related
metrics (e.g. surface areas). Therefore high resolution camera is essential. Results for the sample tray are
presented in Fig. 1(a).
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(a) Point cloud (P) of the sample tray (b) Point cloud results after the green area (c) Point cloud filtering results after
segmentation process (F'). noise filtering (F/).

Figure 1.The point cloud with filtering processes for a sample tray.
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3.2 Plant Segmentation

After generating the initial point cloud, we developed a plant segmentation module to retain only the 3D points
of interest (i.e., the plants) while removing the background points. This step involves two processes: green
area segmentation and noise filtering. Following this step, each plant was individually extracted for further
analysis.

Green Area Segmentation. The green area segmentation process detected the green area of the plants as a
function of the difference between the red and green channels of the 2.5D point (Meyer and Neto, 2008). This
approach was effective for eliminating the 2.5D points that corresponded to elements like pots, soil or trays and
were present in the input images (Fig. 1(b)). Since each point p; from a point cloud P = {p1,p2, - , P~}
is a 6-tuple p; = (x4, i, 2,74, gi, b;), where (z,y, z) represent the spatial position of the point and (r, g, b)
represent the colour of the point, we filtered the point cloud F by applying the following equation:

F = P\{p;}if (E2G; — ExR;) > tfori=1,2,--- N, )

where ExG; =2 X g; —r; —b; and ExR; = 1.4 X r; — b; and ¢ is a threshold value set to 10 in this paper.

Noise Filtering. Residual noise due to points that have a colour that is similar to that of the plants or in-
duced by lighting variations can be eliminated by tuning the value of the threshold ¢ in Eq. 2. However,
such an approach can compromise the robustness of the filtering process since ¢ might need to be tuned
for each specific case. In this paper we adopted a statistical outlier removal process to eliminate these
spurious points. For each point p; in F we selected a set Q° = {p¢,p},...,p%} C F, which are the
K nearest neighbours of p;, and calculate this set’s mean distance p; and standard deviation o; to p; as
Spicqi V(@i—2D)2+(yi—yl)2+(zi—z])2 Ppi cqi (@5 —ni) 2+ (Y —pi) 2+ (2] —pi)? . .
i = 2 e and 0; = 2 e . Point p; is de-

noted as outlier if j1; > p + k * o, where p = Zill wi/|F|, o = ZLE 0;/|F| and & is a free multiplier

parameter that is set to 1 in our experiments. If a point p; is catalogued as an outlier, it is then removed from
F. The result from this noise filtering process is a filtered set F’ of 2.5D points. Fig. 1(c) presents an example
result of this process. The initial point cloud contained 55224 points and 37402 points after filtering.

Point Cloud Clustering. After the noise was removed from the point cloud, the next step was to extract
each one of the reconstructed Arabidopsis plants in order to perform individual plant analysis. A Euclidean
clustering processing method was used to find and segment the individual object point clusters (i.e., the plants)
that were present in the point cloud. The Euclidean clustering process is presented in Alg. 1.

The purpose of this algorithm was to generate small plant clusters from the 3D points that were distinct from
each other. This simple approach is effective at identifying each plant that was previously shown in Fig. 1(c).
Fig. 2(a) presents a detailed result for one of these plants after clustering. As can be seen from these images,
by using our proposed plant segmentation approach, each plant has been successfully filtered and separated
from the rest of the initially noisy point cloud.

Algorithm 1: Euclidean clustering process (for plant segmentation).

Data: Filtered point cloud F’ and a distance value d.

Result: A set of (plant) clusters: C.

set up an empty list of clusters C' and an empty queue of points Q;

for every p; € F' do

add p; to queue Q;

for every p; € ) do
find set Q7 = {p’, p}, ...} C F’ of neighbours of p; with
=\ 22 + (] — ) + (e — ) <
for every pJ, € Q7 do

if pi has NOT been processed then

‘ add pi to queue Q;
label all points in ) as a new cluster and add them to the list of clusters C, and reset () to an empty queue;
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3.3 Surface Reconstruction and Mesh Generation

The next step was to generate surface meshes based on individual plant point clouds. The mesh generation
module consists of two parts: a combination of the Greedy Projection and a hole filling algorithm followed by
a Poisson Reconstruction method. Greedy projection keeps a list of points and grows a mesh by adding new
triangles until all possible points are connected. The module also contains a hole filling function. As observed
on Fig. 2(b), the Greedy Projection method constrained the mesh to the original point cloud (4896 vertices as
4896 points) by connecting only the existing points. The hole filling algorithm generated new faces without
adding extra vertices to the original point cloud (Fig. 2(c)).

The second part of the mesh generation module includes the Poisson Reconstruction method. This algorithm
requires oriented points to serve as samples of the solid boundary so that the gradient of the computed implicit
function can be used to approximate the normal field of the boundary. Therefore, a normal estimation process
was carried out before applying the Poisson Reconstruction from these oriented points. One characteristic of
Poisson Reconstruction is that it produces a watertight surface, which is not exactly suitable for our scenario
where leaves are presented in pieces and normally separated by gaps (Fig. 2(d)). Therefore, we applied the
surface trimming algorithm developed by Kazhdan and Hoppe (2013) to the workflow for pruning the surface
according to the sampling density of the point cloud. As shown in Fig. 2(e), the Poisson reconstruction
algorithm generated new vertices and new faces while creating a smoother surface when compared to that of
the Greedy Projection (Fig. 2(b)). One drawback of this approach is that, for non-watertight surfaces, finding
the right parameters to trim the mesh remains a challenging task. Here we set the value for this specific
scenario based on repeated tests. In a final step we derived parameters such as total surface areas and surface
normals (Fig. 2(f)) to determine the angular distributions of the leaves.

(a) Point cloud for Arabidopsis plant (b) 3D Mesh of Pot 8 from greedy pro- (c) 3D mesh with filled holes: 8872
of Pot 8 in the sample tray. jection: 8428 faces and 4896 vertices. faces and 4896 vertices.

(d) 3D mesh after Poisson reconstruc- (¢) Trimmed Poisson reconstruction: (f) The surface normals of the recon-
tion: 25595 faces and 12885 vertices. 19800 faces and 10726 vertices. structed mesh.

Figure 2.The 3D surface reconstruction process for Arabidopsis plants.

4 EXPERIMENTS AND RESULTS
The experiment for A. thaliana rosettes was designed as follows: a sample tray, part of a larger experiment

(60 trays) in which 408 lines of a bi-parental (Bay-0 x Shahdara) mapping population of A. thaliana (plus the
parents), was grown in a Debco potting mix in Scm pots in trays of 20 randomised plants. The plants were
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Table 1.Measured properties of the sample tray (unit: mm, except for the Area: mm?)

PotID | x_center y.center z.center x.length y_length zlength Area
1| -111.10 -113.65 389.98 7.62 5.94 2.64 15.43
2| -3522  -12035 393.79 22.17 27.21 5.11 237.95

19 | 98.01 89.27 392.15 11.04 14.11 3.69 46.18
20 | 149.36 92.74 394.26 6.07 8.55 3.14 24.50

grown in growth chambers and were scanned every weekday in a HTP phenotyping platform “TrayScan” over
one month.

Metrics. After generating individual meshes, the plant’s central position in 3D (Xcenters Ycenter a0d Zeenter)
with respect to the fixed imaging system, the plant’s size in terms of length, width, height and most importantly
surface area were measured and quantified. The surface area was calculated by summing the areas of each
triangle in the mesh. The result of the sample tray for captured plants (Arabidopsis-thaliana_Tray_0001-date-
2014-07-17T11-48-30-round-001-003) is shown in Table 1.

Application of the Pipeline to Characterising the Dynamics of Plant Development. In A. Thaliana Tray
0001, the automated workflow processed data from 20 time points (period 30/06/2014 to 25/07/2014). The
dynamics of plant development was analysed by aggregating the surface areas of the same plant over time, as
shown in Fig 3(a). The processing pipeline runs efficiently on a Dell Precision T7910 machine: it takes 90 to
180 seconds to process one tray at one time point. Thus the processing of 20 time points for one tray takes less
than an hour. The accuracy of the surface area measurement depends on the mesh quality will be evaluated in
future research using the scanned dissected leaves. The experimental setting is shown in Fig 3(b).

Plant Area vs. Time
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(a) Growth curve of the surface area for pots 1-20 from A. Thaliana Tray (b) Experimental Setting.
0001 for the period 30/06/2014 to 25/07/2014.

Figure 3.Growth curve and its experimental setting

5 CONCLUSIONS

In this paper, we presented an automated stereo reconstruction pipeline for analysing plant growth in HTP. The
pipeline integrates various computer vision techniques (including stereo-matching, point cloud processing,
surface reconstruction) in a single workflow. The workflow was tested using a dataset consisting of 60 trays
with 20 time points. Results show that the system quantifies morphometric parameters in 3D for a set of A.
thaliana accessions.

Currently, the workflow depends on an overhead stereo camera pair for 3D reconstruction, which is inherently
fragile when leaves are occluded. More camera views will be added to the system to obtain more comprehen-
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sive information. Meanwhile, plant segmentation module will be further developed to deal with overlapping
areas in the stereo images. Currently attributes such as surface area are calculated at the whole-plant level.
Future work will focus on leaf segmentation based on the reconstructed mesh and extracting attributes at single
leaf level. A system upgrade will be performed in the future to adopt higher resolution cameras, which will
enable the pipeline to process other species, especially the ones with thin leaves.
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