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Abstract:   The estimation of leaf surface wetness has received considerable attention in recent years from a 
diverse group of scientists. Leaf wetness is widely accepted as one of the most important input variables for 
modelling many biophysical processes such as the development and spread of fungal and bacterial diseases. 
Various types of sensors have been developed for measuring leaf surface wetness. The rapid development 
and varied nature of these sensors have contributed to a lack of standardisation and the lack of a single 
accepted protocol for the use of sensors. An alternative to the use of sensors is the simulation or modelling of 
leaf surface wetness (Huber & Gillespie, 1992; Weiss, 1990). Simulation enables surface wetness to be 
estimated from historical, forecast weather data, or both, rather than from monitoring and measurement using 
in-field leaf wetness sensors. 

The objective of this work was to develop and evaluate Adaptive Neuro-Fuzzy Inference Systems (ANFIS) as 
an approach to modelling Leaf Wetness Duration (LWD). This paper reports on a comparative analysis of 
ANFIS with Classification and Regression Tree/Stepwise Linear Discriminant (CART), Number of Hours 
Relative Humidity Greater than 90% (NHRH>90%), Fuzzy Logic System (FLS) model, Penman-Monteith (P-
M) model, and the Surface Wetness Energy Balance (SWEB) model.  The experimental results in this study 
shows that the overall mean absolute error of ANFIS model was lower than all other models.  It was also shown 
that ANFIS model resulted in higher estimation accuracy over FLS in all five stations. 
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1. INTRODUCTION 

The presence of water on plant surfaces influence many biophysical processes such as the development and 
spread of fungal and bacterial diseases. For a fungal disease to occur, certain environmental conditions have to 
be fulfilled, including a specific duration of wetness on the leaf surface. Leaf wetness duration (LWD) is the 
length of time that rain, dew, or fog droplets are retained on aerial plant surfaces. LWD is an important factor 
in the development of certain foliar diseases, but is difficult to measure since there is no observation standard 
(Sentelhas, 2004). Despite this difficulty, many plant disease management and decision support systems rely 
on LWD (Huber and Gillespie, 1992, Klemm et al., 2002). Various types of sensors have been developed for 
measuring leaf wetness. Mechanical sensors were developed from the 1950s (Hirst, 1954) and the trend shifted 
to electronic sensors after the 1970s (Sutton, et al., 1984). Electronic sensors use the principle of resistance or 
capacitance to measure the sensor’s surface exposure to droplets. The rapid development and varied nature of 
these sensors have contributed to a lack of standardisation and the lack of a single accepted protocol for the 
use of sensors. There are currently numerous different leaf wetness sensors available in the market. However, 
none of them have materials and deployment standards to verify them (WMO, 2008). In addition, the problems 
associated with leaf wetness measurement are not related only to the sensors themselves, but also to how the 
sensors are used (Rowlandson, et al., 2015). Using leaf wetness sensors can also be costly and labour intensive. 

An alternative is to use mathematical models to simulate LWD using meteorological data. Simulation enables 
surface wetness to be estimated from historical and or forecast weather data, rather than from monitoring and 
measurement using in-field leaf wetness sensors (Huber & Gillespie, 1992; Weiss, 1990). Based on the input 
types LWD models are classified into two categories: empirical and physical models (Kim et al., 2002). 
Physical models simulate the processes of dew formation and evaporation between the plant surface and the 
atmosphere (Rao et al., 1998). Empirical models have simple inputs and often based on regression analysis and 
the relationship between leaf wetness and weather data (Huber and Gillespie, 1992).  

Leaf wetness is a difficult variable to measure and cannot be considered a true atmospheric variable as it is 
related to structural and surface optical properties and microclimate (Sentelhas, 2005). Physical changes to the 
surrounding of a leaf has an important role in formation of leaf wetness. Various approaches such as fuzzy 
logic and neural networks, have been employed to model and characterise leaf wetness patterns. (Jang et al., 
1997, Kim et al., 2004). Fuzzy logic and neural networks are characterisation techniques that have proven to 
achieve higher accuracy and precision than classic statistical approaches (Weiland & Mirschel, 2008). These 
are suitable methods to model complex nonlinear functions, dealing with prediction, classification and pattern 
recognition problems (Zadeh, 1994, Mellit & Kalogirou, 2008).  

This paper proposes using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to estimate LWD. ANFIS is a 
hybrid system that combines fuzzy logic and neural network techniques that intend to take advantage of both 
paradigms to assess the condition of leaf surfaces. This paper reports on a comparative analysis of ANFIS with 
five existing LWD models, including Classification and Regression Tree/Stepwise Linear Discriminant 
(CART) (Gleason and Koehler, 1994), Number of Hours Relative Humidity Greater than 90% (NHRH>90%) 
(Sentelhas et al., 2008), a Fuzzy Logic System (FLS) model (Kim et al., 2004), the Penman-Monteith model 
(Sentelhas et al 2006), and the Surface Wetness Energy Balance (SWEB) model. 

2. RELATED STUDIES 

A number of mathematical models have been developed to simulate LWD during the past years. Some of the 
models were involved in this study for proposed model validation. This section briefly reviews two empirical 
models, NHRH≥90% model, CART model, and two physical models, P-M model, SWEB model, also a hybrid 
empirical-physical model, FLS. 

NHRH≥90% model is the simplest empirical model that uses only one variable to predict leaf wetness. This 
model assumption is that when Relative Humidity (RH) is greater or equal to a constant value (90% in most 
cases), then surface wetness is present (Sentelhas et al., 2008). The reason for this assumption is that when 
leaves are colder than surrounding air, and leaf temperature reached dew point of surrounding air, condensation 
begins to form.  

CART model is an empirical model utilising a hierarchical decision tree based on threshold values of RH, dew 
point temperature, and wind speed as inputs to estimate LWD. The end of the regression tree is the branch of 
conditional statement that classifies whether a period is dry (no dew) or wet (dew present). CART model has 
relatively few input variables requirement, which is why this model is considered simple and easy to 
implement. In a study by Gleason and Koehler (1994), CART tends to underestimate wetness presence in 10 
out of 14 stations.  

P-M model is a physical model based on Penman-Monteith equation to estimate latent heat flux (LE) and 
utilises dew deposition, dew evaporation, and intercepted rain. The main advantage of P-M model is that it 
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does not require air temperature to be measured at crop level.  Like other physical model, P-M model uses net 
radiation as an input, this often became a problem as net radiation is seldom available in standard weather 
stations. Thus, usually an estimated net radiation is employed using other available weather parameters. In a 
study by Sentelhas et al. (2006), P-M model overestimated wetness by 1.33 hours in average within three 
locations. P-M model also showed low spatial variability under diverse climatic conditions. 

SWEB model is a model that is essentially a canopy water budget. This model consists of 4 different modules: 
surface water distribution, canopy water budget, energy balance, and a transfer coefficient calibrated to surface 
wetness. These four modules complement each other and lead to the first module, obtaining surface wetness 
by comparing its fraction index of canopy wet surface area (Wind) and wetness threshold (Wth). When the index 
number is higher than the threshold, surface wetness is present. Otherwise, it is stated as dry. In SWEB, net 
radiation is only used to calculate condensation at night. SWEB was developed with grape canopies in mind. 
It treats the whole grape canopy as a single large leaf. In a study by Magarey et al., SWEB performed with the 
highest accuracy in the relatively less humid site, with a mean absolute error of up to 0.7 h/day (2006). 

FLS model incorporates physical and empirical approaches. This model is essentially an empirical model that 
complies with energy balance principles. FLS detects wetness by calculating the relationship between latent 
heat flux, wind speed, and net radiation. In research by Kim et al. (2004) FLS showed a smaller error rate and 
superior accuracy compared to the CART model. The main challenge in creating an FLS model is in 
determining rules and the membership function of each variable; the user needs to understand the 
characteristics of each variable, and often both number of rules and fuzzy subsets are chosen arbitrarily. This 
uncertainty may cause a suboptimal model for the particular dataset.   

3. ANFIS MODEL 

ANFIS is essentially a hybrid model which combines two intelligent models, an Artificial Neural Network 
(ANN) and a Fuzzy Inference System (FIS) (Alves, et al., 2011). The FIS consists of a fuzzy logic method, 
fuzzy IF-THEN rules, and fuzzy reasoning. The main feature of this model is that inferences based on rules 
and known facts are used to make decisions based on human-like reasoning (e.g. wet, most likely wet, and 
dry). Kim et al. (2004) used an FIS to predict leaf wetness; this specific application of FIS to LWD modelling 
was referred to as FLS. A drawback of the FIS model is that rules and membership functions were either created 
arbitrarily or defined based on a user’s understanding of input variable characteristics. The ANN in ANFIS 
handles the mapping of input to output space through layered neurons that are connected by synaptic junctions. 
With ANN mapping, membership functions and rules are always data-specific. ANFIS integrates the 
advantages of both intelligent systems to optimally model dynamic and complex problems. 

The model is an adaptive neuro-fuzzy inference system since it utilises an adaptive network that can compute 
gradient vectors systematically. Figure 1 shows the architecture of the ANFIS network. The neural network 
classifies and finds patterns within an input parameter through the layers, and maps it into the desired output. 
Each layer handles different tasks in the network as described below. 

Layer 1 is the input layer; this is where the inputs are ‘fuzzified’ or translated into linguistic labels, and the 
membership grade is generated for each label. Every node in this layer is adaptive, and the number of nodes 
depends on the number of inputs. After the input spaces are identified in layer 1, the degrees to which inputs 
satisfy the membership functions are found. 

Layer 2, the implication layer, contains 
fuzzy rules and each node's firing strength of 
a rule. The firing strength is usually obtained 
as the product of membership grades 
generated by the previous layer. There are 
Ab number of rules in ANFIS, where ‘A’ is 
the number of membership functions of 
every input, and ‘b’ is the number of inputs. 
The number of nodes in this layer is reliant 
on the number of rules, and is fixed. The 
next layer node number will follow this 
layer’s number.  

Figure 1. The architecture of ANFIS network 
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In layer 3, the normalisation layer, the 
ratio of each rule’s firing strength to the 
total of all rule firing strengths is 
calculated. Then in layer 4, the 
defuzzification layer, the output of each 
node is weighted and computed 
towards the overall output. The output 
of this layer of the model is a crisp 
value. In layer 5, the combining layer, 
the overall output from the previous 
layer is computed as the summation of 
every rule’s contribution. ANFIS 
model construction time depends on the 
number of inputs and membership 
functions; some inputs increase the 
complexity of computation, and also 
impair the transparency of the underlying input model. Therefore, it is necessary to do heuristic input selection 
before constructing the model (Jang, 1996). 

4. EXPERIMENTS  

Five weather stations were selected within New Zealand. These stations were located across the country’s 
North and South Islands in Pukekohe (PKE), Martinborough (MTB), Gisborne (HXT), Marlborough (RPU), 
and Hawke’s Bay (TRI). These stations are located at least 150 kilometres apart to ensure that each station has 
different micrometeorological characteristics. Days with rainfall measured ≥0.25 mm were defined as rain 
days, otherwise any dew-only days. Table 1 shows average wetness period per day in both rain days and dew-
only days within the two-months data range used in this study. The TRI station is the wettest station with the 
highest wetness period in both rain days and dew-only days. Whereas the RPU station is the driest with 8.3 
h/day on rainy days and 2.4 h/day wetness on dew-only days. 

4.1. Data preparation 

The data used herein was collected during summer 2012 from January to February. The data includes hourly 
measurements of air temperature, rainfall, relative humidity, and leaf wetness obtained from five stations 
maintained by the New Zealand Institute for Plant & Food Research. The wind speed data was obtained from 
the nearest National Institute of Water and Atmospheric Research (NIWA) stations. Each station contains 
approximately 1,440 data points for the period of two months. An electronic leaf wetness sensor (Model 237, 
Campbell, Logan, UT) was used to measure leaf wetness at each station. The sensor was connected to a 
Campbell CR-10 data logger, with outputs scaled from 0 (driest) to 100 (wettest). The data logger was set to 
scan the sensor every minute and logged every hour. Campbell model 237 leaf wetness sensors were used as a 
reference on numerous research (Pedro, 1981; Lau et al., 2000; Sentelhas et al., 2005) that showed the sensor 
has 15-30 minutes of response time compared to visual observation, confirming their accuracy in the field. 
When the mean sensor reading of the hour was greater than 50, wetness was considered present on the leaf, 
otherwise it was considered dry. 

We split the data into three randomly selected subsets used for training, validation and testing of each model. 
The training set contained 70%, the validation set 10% and the testing set 20% of the entire data set. The 
process of resampling was conducted five times and each time a fresh model was created over the new sets. 
The approach of resampling the training and testing sets for each iteration was intended to avoid statistical bias 
that might arise due to a single sampling of the data. 

4.2. Implementation 

A single output ANFIS model, to predict LWD, was trained and simulated in Matlab® R2012B using the 
Neuro Fuzzy-Design Toolbox. In this study an initial FIS was generated using subtractive clustering method 
to avoid dimensionality problems (Wei et al., 2007). Subtractive clustering is a fast, one-pass algorithm to take 
input-output training data and generate a Sugeno-type fuzzy inference system that models the data behaviour. 
Subtractive clustering estimates the number of rules and membership function for the dataset. In this case, 
Gaussian Curve membership function (gaussmf) was chosen with numbers of membership function ranging 
from 2 to 4 for each variable, depending on the dataset. The number of rules was generated according to the 
number of the membership function selected. To train the model, we used a hybrid learning method that 
combines a gradient method and least square estimates, this method was chosen to reduce processing time and 

Table 1. Daily mean wetness period and total rain and no rain days 
on five stations for Jan-Feb 2012 

Stations 
Rainfall records LW records (h/day) 

Dew-only 
day 

Rain 

daya 

Total 
rainfall 
(mm) 

Dew-only 
day Rain day 

RPU 47 13 65.8 2.4 8.3 
HXT 32 28 207.7 2.7 9.9 
MTB 43 17 95 5.5 10.3 
PKE 29 29 148.49 8.2 11.4 
TRI 40 20 216.6 10.8 17.4 

a Rain day defined as days with rainfall ≥0.25 mm was measured; 
h i  d fi d  d  l  d  
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to avoid local minima (Pabreja, 2011). All the other models evaluated in this study were implemented as 
reported in the literature and described in Section 2 of this paper.  

4.2.1. Input Selection for ANFIS 

Input variables included in the selection were temperature, relative humidity, rainfall and wind speed. 
Furthermore, three derived variables: Vapour Pressure Deficit (VPD), para-Net Radiation (pRn), and the partial 
pressure of water vapour in the air (ea) were included. These variables were required by the FLS model (Kim 
et al., 2004). In order to find the number of possible input combinations, a binomial coefficient formula was 
used: 𝐶𝐶𝑏𝑏𝑎𝑎, where a = number of inputs to be tested, and b = desired final number of inputs.   

An ANFIS was trained for one epoch for any given input combination and the model with the lowest error rate 
was chosen as the optimal input combination. The selected model was then fine-tuned with more epochs and a 
more extensive dataset to find the most suitable model. This approach assumes that the ANFIS with the lowest 
error rate on one epoch has a higher chance to have a lower error rate during further training (Jang, 1996). This 
may not always be a correct assumption, but it is pragmatic. The best input combination with the lowest error 
rate was found to be wind speed, VPD, and pRn.  

5. RESULTS 

Five randomly resampled subsets 
of data were used to generate 
models for data obtained from 
each station as described in 
Section 4.1. All models were 
validated with the actual leaf 
wetness sensor readings and their 
performances were compared. 
For each model Mean Error 
(ME), Mean Absolute Error 
(MAE) and Estimation Accuracy 
(EA) were calculated. ME was 
computed by averaging the differences between measured and estimated LWD for 24 hours period. ME 
determines the tendency of a model to overestimate or underestimate LWD. MAE was calculated by averaging 
the absolute values of hourly errors. MAE determines overall accuracy of the model. The EA represents the 
degree of closeness of estimated and measured LWD in percentage, calculated according to equation 1, where 
N is the total number of data points:  

  

EA = �1 – 
Σ |Actual –  Estimated|

𝑁𝑁 �  × 100   (1) 

Table 2. LWD models performance on 5 stations for Jan – Feb 2012 

 Stations 
Estimation Accuracy (%) 

ANFIS FLS CART SWEB NHRH>90 PM 
RPU 82.28 69.47 69.65 85.61 77.89 76.67 

HXT 94.76 70.48 76.43 85.00 91.45 91.43 

MTB 79.55 65.45 80.00 82.27 88.64 86.82 

PKE 83.61 70.83 84.44 84.17 81.39 82.50 

TRI 90.00 82.56 68.59 84.23 80.38 89.10 

Overall 86.04 71.76 75.82 84.26 83.95 85.30 
 

 

  
Figure 2. LWD models ME (a) and MAE (b) comparison on 5 different stations within Jan – Feb 2012 
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Inspecting the results from Table 2, ANFIS has the highest overall EA for all five stations, and scored the 
highest EA for the HXT and TRI stations. SWEB model exhibited the highest EA for the RPU station, while 
CART model was the most accurate on PKE station followed by SWEB which was slightly higher than ANFIS. 
The NHRH≥90% model had the highest EA followed by the P-M and SWEB models for the MTB station.  

Figure 2(a) presents the ME comparison of each model on five stations. SWEB had similar overestimation and 
underestimation, which leads to only 0.01 h/day overall overestimation. Both ANFIS and PM are scored not 
far from 0 on most stations. CART and NHRH≥90% models tends to overestimate leaf wetness occurrence. 
Figure 2(b) shows the model’s MAE comparison in five different stations. ANFIS model had the smallest MAE 
in 4 out of 5 stations (overall 0.14 h/day). In contrast, FLS and NHRH≥90% have the largest MAE of 0.28, and 
0.24 h/day respectively. Table 3 exhibits the overall ME, MAE, and EA for all models across the five stations. 
The overall MAE of ANFIS model was lower than other models. Overall EA for ANFIS was higher than the 
rest. SWEB had ME closer to 0 than ANFIS, while ANFIS and P-M were underestimating by 0.06 h/day.  

6. DISCUSSION AND CONCLUSION 

This study proposed the ANFIS model as a means of estimating 
LWD and compared its performance with five other models. The 
results presented in Section 5 show that ANFIS had higher 
estimation accuracy over FLS in all stations. ANFIS estimation 
was also comparable with that of physical models SWEB and P-
M which incorporate a rainfall variable directly. These physical 
models performed comparatively well in this study. In all stations, 
the SWEB and P-M models both under-estimated and over-
estimated wetness presence (Figure 2(a)), suggesting location-
based errors occur in both models. In contrast, both empirical 
models (CART and NHRH>90%) constantly showed false 
positives across stations. The FLS model, with predetermined 
rules and membership functions from Kim et al. (2004), did not 
perform well in this study. The EA of ANFIS are higher over FLS 
in all five stations suggests that the learning ability of the ANFIS 
model is an advantage (see Table 2).  

ANFIS eliminates the need to decide upon an arbitrary number of membership functions and fuzzy rules, and 
fits the model to the data set. In theory, ANFIS is more complicated than FLS, but in application it simplified 
the modelling process and resulted in higher estimation accuracy. The adaptive role of the ANFIS model’s 
neural network also offers an advantage over linear models: the non-linear representation of ANFIS supports 
greater adaptability of the model. Thus, simplicity and adaptability are the advantages of the ANFIS model. 
Although the overall results for ANFIS was showing to be more accurate than the rest of the models, it did not 
perform well on RPU and MTB stations. Both stations had the lowest number of rain days for the given period 
(see Table 1) which resulted in an imbalanced and small training set for ANFIS contributing to a lower 
accuracy. Three stations that ANFIS performed with the highest accuracy was in HXT, TRI, and PKE. These 
stations had more than 20 rain days out of 60 with adequate amount of rainfall. This suggests that ANFIS 
model’s input dataset needs to be much larger to enable better generalisation and more accurate estimation. 

Further research is needed using a larger, more spatially and temporally diverse dataset for model training and 
to allow a detailed analysis of the timing and causes of leaf wetness (i.e. dew or rainfall).  

ACKNOWLEDGMENTS  

The authors would like to thank Robert Beresford and Gareth Hill from The New Zealand Institute for Plant & 
Food Research for their contribution of weather and leaf wetness data used in this study. 

REFERENCES 

de Carvalho Alves, M., Pozza, E. A., do Bonfim Costa, J. d. C., de Carvalho, L. G., & Alves, L. S. (2011). 
Adaptive neuro-fuzzy inference systems for epidemiological analysis of soybean rust. Environmental 
Modelling & Software, 26(9), 1089-1096. 

Gleason, M., Taylor, S., Loughin, T., & Koehler, K. (1994). Development and validation of an empirical model 
to estimate the duration of dew periods. Plant disease (USA). 

Hirst, J. (1954). A method for recording the formation and persistence of water deposits on plant shoots. 
Quarterly Journal of the Royal Meteorological Society, 80(344), 227-231. 

Table 3. Overall result of all models 
within Jan – Feb 2012 

Models 
 

Overall 
MEa  
(h) 

MAEb  
(h) 

EAc 
(%) 

ANFIS -0.06 0.14 86.04 
FLS -0.08 0.28 71.76 
NHRH>90 +0.22 0.24 75.82 

CART +0.16 0.16 84.26 

SWEB +0.01 0.16 83.95 

P-M -0.06 0.15 85.30 
a ME = Mean error 
b MAE = Mean absolute error 
     

 

590



A. Ghobakhlou et al., Estimation of Leaf Wetness Duration Using Adaptive Neuro-Fuzzy Inference 
Systems 

Huber, L., & Gillespie, T. (1992). Modeling leaf wetness in relation to plant disease epidemiology. Annual 
review of phytopathology, 30(1), 553-577. 

Jang, J.-S. R. (1996). Input selection for ANFIS learning. Symposium conducted at the meeting of the 
Proceedings of the fifth IEEE international conference on fuzzy systems 

Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing; a computational approach 
to learning and machine intelligence. 

Kim, K., Taylor, S., & Gleason, M. (2004). Development and validation of a leaf wetness duration model using 
a fuzzy logic system. Agricultural and forest meteorology, 127(1), 53-64. 

Kim, K., Taylor, S., Gleason, M., & Koehler, K. (2002). Model to enhance site-specific estimation of leaf 
wetness duration. Plant disease, 86(2), 179-185. 

Kim, K.-S. (2003). Prediction of leaf wetness duration using a fuzzy logic system (Dissertation). Iowa State 
University. Retrieved from http://lib.dr.iastate.edu/rtd/723Paper 723) 

Klemm, O., Milford, C., Sutton, M., Spindler, G., & Van Putten, E. (2002). A climatology of leaf surface 
wetness. Theoretical and Applied Climatology, 71(1-2), 107-117. 

Lau, Y. F., Gleason, M. L., Zriba, N., Taylor, S. E., & Hinz, P. N. (2000). Effects of coating, deployment angle, 
and compass orientation on performance of electronic wetness sensors during dew periods. Plant Disease, 
84(2), 192-197. 

Magarey, R., Russo, J., & Seem, R. (2006). Simulation of surface wetness with a water budget and energy 
balance approach. Agricultural and forest meteorology, 139(3), 373-381. 

Mellit, A., & Kalogirou, S. A. (2011). ANFIS-based modelling for photovoltaic power supply system: A case 
study. Renewable energy, 36(1), 250-258. 

NIWA. CliFlo: NIWA's National Climate Database on the Web. Retrieved 02-May-2015,  from 
http://cliflo.niwa.co.nz/ 

Pabreja, K. (2011). An Adaptive Neuro-Fuzzy Inference System based on Vorticity and Divergence for 
Rainfall forecasting. International Journal of Computer Science and Information Security, 9(12), 45. 

Pedro, M., & Gillespie, T. (1981). Estimating dew duration. I. Utilizing micrometeorological data. Agricultural 
Meteorology, 25, 283-296. 

Rao, P., Gillespie, T., & Schaafsma, A. (1998). Estimating wetness duration on maize ears from meteorological 
observations. Canadian journal of soil science, 78(1), 149-154. 

Rowlandson, T., Gleason, M., Sentelhas, P., Gillespie, T., Thomas, C., & Hornbuckle, B. (2015). 
Reconsidering Leaf Wetness Duration Determination for Plant Disease Management. Plant disease, 99(3), 
310-319. 

Sentelhas, P. C., Dalla Marta, A., Orlandini, S., Santos, E. A., Gillespie, T. J., & Gleason, M. L. (2008). 
Suitability of relative humidity as an estimator of leaf wetness duration. Agricultural and forest 
meteorology, 148(3), 392-400. 

Sentelhas, P. C., Gillespie, T. J., Batzer, J. C., Gleason, M. L., Monteiro, J. E. B., Pezzopane, J. R. M., & Pedro 
Jr, M. J. (2005). Spatial variability of leaf wetness duration in different crop canopies. International Journal 
of Biometeorology, 49(6), 363-370. 

Sentelhas, P. C., Gillespie, T. J., Gleason, M. L., Monteiro, J. E. B., Pezzopane, J. R. M., & Pedro, M. J. (2006). 
Evaluation of a Penman–Monteith approach to provide “reference” and crop canopy leaf wetness duration 
estimates. Agricultural and forest meteorology, 141(2), 105-117. 

Sutton, J., Gillespie, T., & Hildebrand, P. (1984). Monitoring weather factors in relation to plant disease. Plant 
disease, 68(1), 78-84. 

Wei, M., Bai, B., Sung, A. H., Liu, Q., Wang, J., & Cather, M. E. (2007). Predicting injection profiles using 
ANFIS. Information Sciences, 177(20), 4445-4461. 

Weiss, A. (1990). Leaf wetness: Measurements and models. Remote Sensing Reviews, 5(1), 215-224. 
doi:10.1080/02757259009532130 

Wieland, R., Mirschel, W., Groth, K., Pechenick, A., & Fukuda, K. (2011). A new method for semi-automatic 
fuzzy training and its application in environmental modeling. Environmental Modelling & Software, 
26(12), 1568-1573. 

WMO. (2008). Guide to Meteorological Instruments and Methods of Observation (Seventh Edition) WMO 
No. 8. Geneva, Switzerland: Secretariat of the World Meteorological Organization. 

Zadeh, L. A. (1994). Fuzzy logic, neural networks, and soft computing. Communications of the ACM, 37(3), 
77-84. 

591


	P1 PGeoinformatics Research Centre
	P2 PSchool of Computer and Mathematical Sciences
	Auckland University of Technology, New Zealand
	Email: 18Takbar@aut.ac.nz18T
	1. INTRODUCTION
	2. Related Studies
	3. ANFIS Model
	4. EXPERIMENTs
	4.1. Data preparation
	4.2. Implementation
	4.2.1. Input Selection for ANFIS

	5. RESULTS
	6. DISCUSSION AND CONCLUSION
	ACKNOWLEDGMENTS
	References



