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Abstract: Using optimisers to calibrate hydrological models is a computationally intensive process. Most 
optimisation algorithms run on desktop machines, with some running on Linux clusters and a couple that run 
on cloud infrastructure (e.g. cloudPEST). Complex hydrological models require a relatively powerful machine 
and calibration runtimes vary from an hour or less, to days and sometimes weeks. Increasingly, organisations 
are looking to outsource provision and management of computationally intensive infrastructures. While 
virtualisation technology can provide similar performance to high end desktops, there are opportunities to 
harness parallelisation and reduce calibration times, by hosting the modelling software on the cloud 
infrastructure and exposing its functionality through web services. This paper investigates the practicality and 
performance of implementing a calibration wrapper to the eWater Source river modelling package. The Source 
calibration service allows user to calibrate models, where the modelling software, eWater Source, is running 
on the cloud and not on end user’s premises. 

The aim of this analysis was to compare the performance characteristics of a simple GR4J model for the 
Legerwood catchment using eWater Source running as desktop software versus running as a Source calibration 
service on the cloud. Shuffle Complex Evolution was used as the parameter optimisation algorithm for the 
GR4J model parameters. 

The eWater Source product running as desktop software took around 4 minutes to calibrate the model whereas 
the Source calibration service took around 73 minutes to do the same calibration with similar results. The 
difference in run times can be attributed either to: 1) the chatty nature of communication between the machines 
running the eWater Source and the optimization algorithm; and/or 2) time inefficient implementation of 
SCEoptim routine from the hydromad package; and/or 3) performance bottle necks in Source’s external 
interface which exposes eWater Source modelling capability through command prompt. Given the long 
simulation runtimes, the current Source calibration service fails to meet expectations of hydrological model 
builders for improved performance. For software implementers, we would recommend careful attention to the 
software architecture and performance characteristics of proposed cloud-based software implementations early 
in development. In this case, we anticipate future improvements to the infrastructure, or renewed effort 
improving the implementation would lead to a faster implementation. 
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1. INTRODUCTION  

Calibrating hydrological models is a time and compute intensive process. The aim of the exercise outlined in 
this paper was to use the eWater Source hydrological modelling software as a service on the cloud to calibrate 
catchment models. Legerwood catchment (Figure 1) in Tasmania was used for calibration purposes and was 
modelled using daily Rainfall-Runoff (RR) model Ge´nie Rural a` 4 parame`tres Journalier (GR4J) (Perrin, 
Michel and Andreassian, 2003). 

GR4J model takes inputs of daily rainfall and potential evapotranspiration and gives an output of daily runoff. 
Calibrating a GR4J model involves choosing a GR4J parameter set that best fits the observed runoff for a given 
period. Shuffle Complex Evolution (SCE) optimization (Duan et al., 1992; Duan et al., 1993; Duan et al., 1994) 
routine was used to calibrate the model parameters for the GR4J model. The objective of the calibration was 
to maximise Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) of model predictions compared to the 
observed data. SCE optimization routine was chosen because it is frequently used in water resources sector for 
hydrological model calibration and evaluation.  

 

 

Figure 1. The Source model represented the runoff of the Legerwood catchment in North East Tasmania. 

2. PROJECT SETUP 

2.1. Overview 

eWater Source (Source) is a desktop hydrological modelling software written using the Microsoft .net 
framework. Modelling Services Interface (MSI) exposes the modelling capability of Source through RESTful 
calls over the web (Stenson et al., 2014; Leighton et al., 2011). Figure 2 shows the architecture of MSI and 
potential different scenarios making use of RESTful calls to run Source on the cloud. Having the Source 
modelling ability available on the cloud allows researchers and modelers in developing countries, who might 
not have appropriate hardware resources, to run simulations. The results of such simulations could be delivered 
by email or made downloadable via a webpage. Once a simulation on the web is started, the client machine 
which instantiated the simulation need not stay powered on as the actual computations take place on a cloud 
server. 
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Figure 2. The Source Modelling Services Interface (MSI) component diagram (from Stenson et al. (2014). 
An Application Of Services Based Modelling Paradigm To The Hydrologic Domain Using eWater Source). 

SourceAdapter API component of the MSI, which acts as the gateway to Source modelling functionality, is an 
ASP.net application hosted on IIS web server. The SourceAdapter server is associated with one or more 
SourceBroker nodes which can either be virtual or physical machines. Each SourceBroker node runs the 
SourceBroker console application which starts the SourceBroker Windows Communication Framework 
(WCF) service to communicate with the SourceAdapter. SourceBroker service manage individual Source 
instances running from the command line interface of Source, also called Source External Interface. 

On top of SourceAdapter API RESTful service layer, which runs on a windows machine, two additional layers 
were written: 

1) Middle layer: Written in R, this layer does the calibration of the model exposed through 
SourceAdapter API. For the optimization routine, SCEoptim from the hydromad R package 
(Andrews, 2011) was used along with NSE objective function which was also encoded in R. This 
layer runs on a Linux Ubuntu machine. As explained in section 2.2 (Cloud calibration workflow), 
there is bi-directional communication between this layer and the SourceAdapter API layer. 

2) User interface layer: For this layer, a web application was written using Meteor, which is a JavaScript 
framework built on top of node.js. This web application allows user to make selections around the 
calibration process, such as defining parameter ranges for GR4J parameters and configuring the 
SourceAdapter API setup. This layer currently runs on a Linux machine, though meteor is a cross 
platform product. As explained in section 2.2 (Cloud calibration workflow), there is bi-directional 
communication between this layer and the Middle layer.  

Figure 4 shows the bi-directional communication between these 3 different layers. The architecture of the 
project allows for the addition of different optimizers to the cloud calibration system. As shown in Figure 3, at 
the moment a user can select one of two optimizers implemented to support cloud calibration through the web 
interface: SCE and DREAM (Vrugt, 2009). 
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Figure 3. Available calibration algorithms 

Source was used to construct a GR4J model for Legerwood catchment which was then used for calibration 
through both the cloud calibration setup as well as local Source calibration. 

2.2. Cloud calibration workflow 

To calibrate a model on the cloud the user has to 
open the web application in a web browser. This 
web application allows the user to setup a 
calibration, choose a cloud server setup and then 
run a calibration using one of the available 
optimizers. The configuration data defined on the 
web page can also be imported into the system via 
JSON files (Crockford, 2006). For this experiment, 
SCE was selected as the optimization algorithm. 
An example calibration configuration for 
Legerwood catchment is shown in Figure 5. 

 

Figure 4. Communication flow between 
components 

 
 

Figure 5. Calibration web application 
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On running a calibration through the web application, the execution control is transferred to Meteor server side 
code where the user selected options are serialized to lightweight JavaScript Object Notation (JSON) format 
and a new child process is spawned running the appropriate R scripts depending on the user selected calibration 
algorithm. These R scripts in turn start the calibration process and make RESTful calls to the SourceAdapter 
API to run the GR4J model. To and fro communication takes place between all the three different layers for 
various purposes.  

Once the calibration has started, the  SCEoptim routine reports timing information about the execution back to 
the web application every 10 iterations. The web application uses this timing information to make an estimate 
about the time it would take to complete the calibration and then shows it to the user. SCEoptim uses the NSE 
objective function to calibrate the GR4J model exposed through SourceAdapter API. For each iteration, new 
set of parameter values is chosen by SCEoptim and the values are passed to the GR4J model through a web 
service call. And when the GR4J model has completed a single run using the parameter values supplied, the 
result time series is passed back to R layer. An NSE value is calculated based on the returned results. This two 
way communication continues until we meet the objective of minimizing the difference observed results and 
calculated results. Figure 6 shows a high level sequence diagram outlining the control flow between different 
components of the setup. 

 

 

Figure 6. Sequence diagram showing the flow of communications 

2.3. Results 

Running the calibrations on cloud infrastructure compared to on a local machine was much slower. Using the 
Legerwood catchment model, Source running as a desktop application took around 4 minutes to complete the 
calibration in 1082 iterations. The same model when calibrated using the cloud setup took around 73 minutes 
and 1270 iterations to calibrate. Slight differences in the calibration setup led to a different NSE value and 
number of iterations. Table 1 summarizes these results and Figure 7 and 8 shows the convergence of objective 
function score towards a solution for both the local and cloud runs. We have not thoroughly investigated the 
reasons behind why it took so long to calibrate on the cloud due to time restraints, however some of the reasons 
could be: 

1. Chatty communication between Source adaptor API, running on a windows machine and SCEoptim, 
running on a Ubuntu Linux machine, is causing the calibration to run slow as for each iteration the 
result time series is sent back over the network to SCEoptim where an objective score is calculated 
using the result time series and the observed time series and based on that score either: 

a. The calibration is stopped if it meets the threshold defined or  
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b. The Source adaptor API is again called with a new set of GR4J parameter values chosen by 
SCEoptim implementation. 

If chatty communication is the cause for slow calibration times, then there could be significant 
improvements to calibration runtimes if model simulation runtimes are greater in magnitude to 
communication cost involved thereby minimizing the effect of back and forth communication.  

2. Source External interface, on top of which the SourceAdapter API has been developed, has  
performance bottlenecks which cause the Source model to run slower that usual. Profiling the Source 
external interface code might help us analyze the perfromance bottlenecks. 

Although unlikely, the SCEoptim implementation of SCE from the hydromad package may not be as efficient 
in terms of time taken to calibrate. If this is the case, using another implementation of SCE algorithm might 
show better results. Some preliminary profiling of execution times in various components of the system for a 
single run gave these results: 

1) Total time to complete the calibration: 73 minutes. 
2) Total time spent in the R function that SCEoptim is trying to optimize: 72.14  minutes 
3) Total time spent in SourceAdapter API code for setting the metaparameters for each run and then 

running the model: 55.55 minutes 

Now SourceAdapter API itself is just a delegator which forwards the metaparameters for each run to the Soure 
instance running through command prompt. So 76% of the time is spent running the model through the Source 
external interface. This supports our hyothesis that there might some bottlenecks in the interface/internals of 
eWater Source system which need to be analyzed. 

Table 1. Results 

Implementation Time 
taken 

No. 
iterations 

x1 x2 x3 x4 NSE 

Source 4 mins 1082 884.50 -3.94 157.90 0.66 0.849 

SCEoptim 73 mins 1270 934.17 -3.86 152.61 0.50 0.850 

 

 

Figure 7. Convergence of NSE score for local Source run 

 

 

Figure 8. Convergence of NSE score for Source web service run 
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3. DISCUSSION AND CONCLUSIONS 

Source running locally took 4 minutes to calibrate the same GR4J model which took 73 minutes to calibrate 
on the cloud. So the performance of the cloud setup is a lot worse than running a Source calibration locally. 
Although the reasons behind the slow performance of cloud setup have not been analyzed yet, there could be 
several reasons which explain it. Given the time constraints, we were not able to test the possible reasons which 
lead to making the cloud setup of Source slow for running calibrations. Future work planned for the project 
involves testing the interfaces/internals of various components in this setup and profiling the code to come up 
with bottlenecks that exist in the system. Effort needs to be spent to improve the performance and then 
benchmark the calibration performance of Source calibration service vs Source run locally. For future 
implementers of such cloud-based systems, our advice would be to test the interfaces of various components 
from a performance perspective as they develop the system. Doing so might help in some circumstances 
wherein just changing the architecture of the setup can mitigate some performance issues. 
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