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Abstract: A stationary time series model is directional if it has properties that are not symmetric with respect
to time, for example if, after the expected value is adjusted to 0, the expected value of the product of the
variable squared and the following variable differs from the expected value of the product of the variable and
the following variable squared. Marked directionality in time series is apparent from a comparison of time
series plots in chronological order and in reverse order (time-to-go), but formal quantitative tests are needed
to determine the strength of evidence against an assumption of reversibility (no directionality). Linear time
series models with Gaussian noise (LGN models) are reversible whereas linear models with other noise distri-
butions and non-linear models are directional. Evidence of directionality in time series can be found in many
disciplines including financial time series. Examples of directional financial time series are presented, together
with values of directionality statistics. A method of calculating the p-values of the directional statistics, corre-
sponding to a null hypothesis of reversibility, using simulation is presented. The time series are then modelled
by threshold autoregressive models, with noise distributions, which can be non-Gaussian, fitted to match the
empirical distribution of the residuals. The fitting criterion is a weighted sum of the error sum of squares and
a measure of discrepancy between values of the directionality statistics in the time series and long simulations
from the potential model. Strategies for determining suitable weights for the criterion will be investigated. The
directional time series models will be assessed in terms of the distribution of extreme values of the time series,
which is a feature that was not used in the fitting process. The assessment will be made by comparing the dis-
tribution of extremes from: the observed time series; a long simulation from the fittted directional model; and
a long simulation from a LGN model fitted to the time series on the basis of the Akaike information criterion
(AIC).

Keywords: Directional time series, reversibility, financial time series, randomization test, threshold autore-
gressive models

21st International Congress on Modelling and Simulation, Gold Coast, Australia, 29 Nov to 4 Dec 2015
www.mssanz.org.au/modsim2015

1022



M.M. Mansor, D.A. Green and A.V. Metcalfe, Modelling and simulation of directional financial time series.

1 INTRODUCTION

Many financial time series show non-stationarity inasmuch as there is a trend, or there are seasonal effects. For
example, sales of summer clothing are seasonal and may be increasing in line with an increasing population.
In contrast there is no reason to suppose that there is any seasonality or long term trend in exchange rates. In
any case, if a trend or seasonality are identified in a time series they can be estimated and removed to give a
deseasonalized and detrended series that can be considered a realisation of a stationary random process.

In this investigation we assume that the time series is a realisation of a stationary random process. A stationary
random process is reversible if it is not possible to distinguish between a realisation in its time order and
the same realisation in reverse time order (time-to-go). If a stationary random process is not reversible it is
directional. Linear causal models with independent Gaussian errors are reversible. Linear causal models with
non-Gaussian errors are directional, as are non-linear models. For some time series it is possible to discern
directionality by comparing a plot against time with a plot against time-to-go. For example, the monthly
exchange rate of the British pound sterling against the U.S. dollar (GBPUSD XRT), shown in the upper frame
of Figure 1, does show three marked plummets and relatively slow recoveries. The reverse time plot (time-to-
go) is clearly different in these respects, in fact we see rapid increases, followed by slow decreases.

2 FINANCIAL DATA

Figure 1. Quarterly trading records of GBPUSD XRT from March 1990 to March 2015 
[Data courtesy of Bloomberg]

Figure 2. Interest rates (per annum) for Australian Government Bond Yield 2-yr securities, 
monthly from Jan 1969 to Sep 1994 [Data courtesy of Reserve Bank of Australia]
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Figure 3. Yearly U.S. unemployment rate from 1969 to 2014 [Data courtesy of the U.S. 
Bureau of Labor Statistics]

Graphical inspection for the financial series show some degree of directionality in its time order (above) and
in its reverse time order (below). The exchange rates (Figure 1) show a few well defined plummets. In contrast
there is little qualitative difference between the bond interest rate (Figure 2) in time order and time-to-go order.
In the case of the unemployment (Figure 3) increases generally appear to be steeper than the decreases.

3 TESTING FOR DIRECTIONALITY

There are many statistics that have been designed to detect directionality in time series (e.g. Lawrance, 1991,
Beare and Seo, 2012 and Wild et al., 2014). The methods can be categorised into methods based on original
series and methods based on first differences. A general, and intuitive, indicator is the skewness of the first
order lag one differences. A time series modelled by random variables is given by

{Xt} for t = 1, 2, ..., n (1)

and the first order lag one differences are

Yt = Xt −Xt−1 for t = 2, 3, ..., n. (2)

The mean of the differences is (xn − x1)/n which is approximately 0 for any long time series. If there is
a tendency for rapid increases to be followed by more gradual recessions there will be rather more negative
differences which will on average be less than the average of the positive differences. However there will be
fewer positive differences. It follows that the distribution of differences will be positively skewed: there will
be some outlying positive differences associated with the rapid increases; and the median will be negative and
to the left of the mean which is near 0. In contrast, if there is a tendency for rapid decreases to be followed
by relatively slow recoveries the distribution of differences will have negative skewness. We use the product
moment measure of skewness, and refer to the skewness of the differences, γY as the directionality.

The skewness in Yt can be estimated by

γ̂Y =

∑n
t=1(yt − ȳ)3

[
∑n

t=1(yt − ȳ)2]3/2
. (3)

There is evidence of directionality if the estimate γ̂Y of γY is statistically significantly different from 0.
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Table 1. Statistics of time series

Statistic GBPUSD XRT 2-yr Bond Yeild Unemployment Rate
Time interval quarterly monthly yearly
Length, n 101 309 72
Median, M 1.62 9.90 5.50
Mean, x̄ 1.65 10.06 5.63
Standard dev., s 0.1525 3.3542 1.7596
Lag 1 ACF 0.8490 0.9840 0.7650

Directionality, γ̂ -0.7566 0.3039 1.0246
Two-sided P-value ( 0.004 ) ( 0.028 ) ( 0.00 )
Ratio [ 3.18 ] [ 2.18 ] [ 3.89 ]

The directionality of the exchange rates (Figure 1), which does show clear rapid decreases, is -0.75. The
directionality of the bond yields (Figure 2) and the unemployment rate (Figure 3) is 0.30 and 1.02 respectively.
Inspection of time series plot and time-to-go plot of the unemployment rates (Figure 3) does show steeper
ascents than descents in the former, and steeper descents than escents in the latter.

All three directionalities shown to be statistically different from 0 (two-sided P-values in Table 1) using a
simulation procedure (Mansor et al., 2015). In this simulation procedure, we fit an AR(p) model to the time
series of length n using the AIC criterion to select p, which is given in Table 2. The null hypothesis is that
the time series is reversible. We simulate 1000 time series of length n from the fitted AR(p) model, using a
Gaussian distribution with mean 0 and variance equal to the variance of the residuals for the errors. For each
of the simulated time series, we calculate γ̂Y . We determine the proportion of the simulations for which the
test statistic is absolutely more extreme than the calculated γ̂Y from the original time series. We return this
proportion from the simulation as the two-sided P-value. The ratio in Table 1 is the test statistic in absolute
terms to its standard deviation from the simulation.

4 MODELLING DIRECTIONALITY

For all three time series the residuals from the AR(1) model have a much smaller standard deviation (σest),
given in Table 2 (row 2, Order 1), than that of the original time series (s), given in Table 2 (row 1, Order 0
i.e. the original time series). In contrast, the further reductions in σest when AR(p) models, as selected by the
AIC, are fitted, given in Table 2 (row 3, AIC) is slight.

Table 2. Estimated standard deviation of errors for AR models

Order GBPUSD XRT 2-yr Bond Yeild Unemployment Rate
0 s = 0.1525 s = 3.3542 s = 1.7596
1 AR(1), σest = 0.0811 AR(1), σest = 0.6029 AR(1), σest = 1.1409

AIC AR(3), σest = 0.0798 AR(10), σest = 0.5934 AR(2), σest = 1.1214

These results suggest that the simple AR(1) model is a reasonable first approximation for all three time series.
However, in all cases, the directionality of the realisation of the fitted AR(1) model, using random permutation
of the residuals as errors, does not match the directionality calculated from the observed time series (Table
3). The objective is to improve this aspect of the modeling by introducing a non-linear TAR(1) model. The
TAR(1) model is given by

Xt =

{
αUXt−1 + εt if Xt−1 > TU
αLXt−1 + εt if Xt−1 < TL

(4)

We fit the TAR(1) model by finding the values of αL and αU that minimize the discrepancy,

ω =
n∑

t=2

r2t + φ(γ̂Y − γ̃Y )2, (5)
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where {rt} are the residuals, γ̃Y is an estimate of the directionality of the TAR(1) model, and φ is the weight
given to agreement between the γ̃Y and the target directionality value γ̂Y . The estimate of directionality of
the TAR(1) model is calculated from a long simulation (length N = 105) of the TAR(1) model using random
sampling, with replacement from the residuals. We use α̂ from the AR(1) model as the inital value for αL and
αU when fitting the TAR(1) model. The constraints for stability are that -1 < αL, αU < 1. The optimization
is carried out with the optim() function in R using the Nelder-Mead option (e.g. Nash, 2014). We consider an
TAR(1) with 80% threshold for each series.

Table 3. Directionality measure modelled by AR(1) and TAR(1) 80% using resampled residuals

Financial Series Target γ̂ AR(1) TAR(1) 80% φ

Quarterly exchange rates -0.7566 γ̃ = -0.4031 γ̃ = -0.7273 101

of GBPUSD α = 0.8487 αL = 0.9981, αU = 0.9361
σest = 0.0811 σest = 0.0805

Monthly interest rates of 0.3039 γ̃ = 0.4164 γ̃ = 0.3040 108

2-yr Government bond yield α = 0.9838 αL = 0.7587, αU = 0.7310
σest = 0.6029 σest = 0.9467

Yearly United States 1.0246 γ̃ = 0.9932 γ̃ = 1.0231 107

unemployment rates α = 0.7652 αL = 0.6170, αU = 0.8349
σest = 1.1409 σest = 0.9959

• In the case of the exchange rates, the TAR(1) gives a close agreement with the observed directionality, and a
slightly lower estimate of the standard deviation of errors.
• In the case of the bond rates, which has a value of α close to 1 for the AR(1) model, the closer agreement
of the TAR(1) model with the observed directionality is at the expense of an increase in estimated standard
deviation of the errors.
• In the case of the U.S. unemployment rates, with the lowest value of α in the AR(1) model, both AR(1)
and TAR(1) give a close fit to the observed directionality. The TAR(1) has a slightly lower estimated standard
deviation of the errors.

Figure 4. Trade-off between minimising the sum of squared residuals and minimising the 
discrepancy in directionality by increasing φ for the GBPUSD exchange rates time series

We illustrate in Figure 4 the balance achieved between the sum of squared residuals and the discrepancy
between the target directionality and the simulated directionality of the quarterly GBPUSD exchange rates for
N=105.
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5 SIMULATION OF DIRECTIONAL TIME SERIES

We simulated 1000 time series of length 72 years, the length of the original time series for the U.S. unem-
ployment rates using an AR(1) and a TAR (1; 80% threshold, 2 parameter) models. The upper and lower
coefficients for TAR (1) are the optimised parameters of αL=0.6197 and αU=0.8359 (Table 3). For, both
models two different error distributions were fitted to the residuals: an Extreme Value Type 1 (Gumbel) dis-
tribution of minima (GD); and back-to-back Weibull distribution, that is one Weibull distribution was fitted to
the positive residuals and another to the absolute values of the negative residuals, (WD). The maxima, over 72
years, from the 1000 simulations, with GD and with WD, were stored. Their boxplots are shown in Figure 5,
and the quantile-quantile (Q-Q) plots are shown in Figure 6.

Figure 5. Boxplot of the simulated maxima in the U.S. unemployment rate for each model

Figure 6. Q-Q plot of the simulated maxima in the U.S. unemployment rate, between TAR(1) versus AR(1)

There is no discernible difference in the boxplots for the distributions of maxima with the GD distribution
(Figure 5 upper). In both cases the distribution of the maxima is positively skewed as is typical for extreme
values. However, there is a noticeable difference between TAR(1) and AR(1) with WD errors, such that the
maxima from the TAR(1) are more skewed and more extreme. The Q-Q plots (Figure 6 lower) show that the
TAR(1) with WD has generally higher values than AR(1) with WD. Moreover, the Q-Q plots (Figure 6 upper)
also show that TAR(1) has slightly higher values than AR(1) with GD.
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6 CONCLUSIONS

We focus on directionality which we have defined in terms of skewness of the first differences of the time
series. The financial time series of the quarterly GBPUSD exchange rates, the monthly Australian bond yield
and the yearly U.S. unemployment rates are shown to be directional and the estimated values of the lag 1
autocorrelation are 0.8490, 0.9840 and 0.7650 respectively. All three series are well modelled as AR(1) if a
least squares error criterion is adopted.

Many economic time series are well modelled as an AR(1). If high frequency sampling has the consequence
that the parameter of the AR(1) model (α) is close to 1, then the estimate of directionality is very close to the
skewnnes of the errors. We choose to model the time series of U.S. unemployment in more detail as it had the
lowest value of α (0.76). In contrast, if an AR(1) model has α close to 0, then the skewness of errors has little
effect on directionality.

We have demonstrated that in the intermediate range, in particular for GBPUSD exchange rates and U.S.
unemployment rates TAR(1) model, fitted with discrepancy strategy, can improve the fit to observed direction-
ality and decrease the estimate standard deviation of the errors (σest) (Table 3). We have also shown that the
TAR(1) model combined with a back-to-back Weibull model (WD) for the residuals gives substantially higher
extreme values than the AR(1) model combined with WD for the residuals, in the case of the U.S. unemploy-
ment series. A link between extreme values and directionality has been discussed by Soubeyrand et al. (2014)
in the context of rainfall, and Mansor et al. (2015) in the context of sunspots.
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