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Abstract: The flexibility to revise managerial and/or operational decisions over time in response to uncertain
market conditions can significantly increase the value of a project. In order to maximise the project value,
the operational decisions need to be made sequentially, in an optimal manner, in response to the evolution
of uncertainties. Although dynamic strategies brings substantial improvements of the project, its complexity
from stochastic control algorithm makes modern real option theory rarely adopted by industry. Thus it calls
for a methodology to display graphically the results obtained by real options analysis. An intuitive display
of the information about the boundaries between the regions of different optimal decisions (called switching
boundaries) would greatly assist industry with optimal sequential decision-making under uncertainty.

This paper presents a methodology to construct switching boundaries/surfaces for optimal natural resource
extraction under uncertainty, based on the regression Monte Carlo approach. We extend previous research
by (1) incorporating recently proposed advanced techniques (such as adaptive local basis and memory re-
duction methods) that allow considerable improvement of the accuracy of the switching boundaries; and (2)
constructing and analysing the higher-dimensional switching boundaries.

We illustrate how to construct and use switching boundaries using a classical model of a copper mine with
flexibility to delay, temporarily close, reopen or completely abandon the mineral extraction in response to
the stochastic behaviour of the copper price. For such a model, the switching boundaries are the critical
copper prices that trigger a change of operating regime. For this example, the switching boundaries are two-
dimensional copper price surfaces that depend on the remaining reserve and the remaining time horizon. We
display and analyse these surfaces using both 3D graphs and dynamic 2D graphs.

The paper demonstrates several benefits of the switching boundaries. They can be used by mining companies:

1. as a simple and intuitive decision support tool for identification of optimal operational strategies and for
optimal management of resources projects;

2. to gain insight into optimal strategies under different market conditions and project settings;

3. to benefit financially from dynamic strategies.

Keywords: Real options, stochastic optimal control, least-squares Monte Carlo, memory reduction method, 
stochastic switching
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1 INTRODUCTION

The flexibility to revise managerial and/or operational decisions over time in response to uncertain market
conditions can significantly increase the value of a project. In the minerals industry, it is well known since
the seminal paper of Brennan and Schwartz (1985) [henceforth B&S] that the value of flexibility to delay,
temporarily close, reopen and completely abandon mineral extraction project in response to commodity price
fluctuations can be pronounced. These types of flexibility remain important for optimal management of mod-
ern natural resource investments and continue to draw research interest (see, e.g., Trigeorgis (1996), Slade
(2001), Dimitrakopoulos and Abdel Sabour (2007), Carmona and Ludkovski (2008), Tsekrekos et al. (2012),
Bao et al. (2013), Mortazavi-Naeini et al. (2014), Tarnopolskaya et al. (2015)). In order to maximise the
project value, the operational decisions need to be made sequentially in an optimal manner, in response to
the evolution of uncertainties. The complexity of the real options thoery and stochastic dynamic program-
ming algorithms is among the reasons for real options methods being rarely used by industry. An intuitive
display of the information about the boundaries between the regimes of different optimal decisions (called
switching boundaries) would greatly assist industry with optimal sequential decision-making under uncer-
tainty, and could also potentially accelerate the adoption of real options analysis by industry. The switching
boundaries, also known as critical (or threshold) curves, or dispersal curves, have been studied in a number of
applications in both deterministic and stochastic optimal control problems (see, e.g., Carmona and Ludkovski
(2008), Tarnopolskaya and Fulton (2010a), Tarnopolskaya and Fulton (2010b), Mortazavi-Naeini et al. (2014),
Tarnopolskaya et al. (2015)).

This paper continues the study of the switching boundaries in natural resource investment problems by
Tarnopolskaya et al. (2015) and extends this previous work to the situation when the switching boundaries
depend on the remaining reserves (which is typically the case for natural resource management problems
with longer time horizons). For such case, the switching boundaries become multi-dimensional surfaces. The
construction of switching surfaces in this paper is based on the regression Monte Carlo approach. Recently
proposed advanced techniques, such as adaptive local basis approach (Bouchard and Warin (2012)) and mem-
ory reduction method (Aı̈d et al. (2014)), have been implemented to improve the accuracy and efficiency of
the algorithm. We benchmark the algorithm against the classical results by B&S for the infinite horizon, finite
reserve copper mine valuation problem. We also construct the switching boundaries and analyse their structure
using both 3D graphs and dynamic 2D graphs.

The paper is organized as follows. The problem formulation is discussed in Section 2. The least squares Monte
Carlo (LSMC) method and algorithm for construction of the switching surfaces are described in Section 3. The
numerical results, visualization of the switching surface and discussion are described in Section 4. Finally, the
conclusions are given in Section 5.

2 PROBLEM FORMULATION

We study the optimal extraction of an exhaustible resource by the company which owns a mining license.
The company possesses the operational flexibility to delay, temporarily stop, restart or completely abandon
the extraction operations in response to uncertain commodity price S. Such problem has been studied on an
infinite time horizon by B&S who formulated this problem as a quasi-variational inequality. Realistic mine
planning problems usually have a finite time horizon T , as mining licenses have finite lifetime. In this section,
we formulate the problem as a discrete time, finite horizon stochastic switching problem.

We assume that management has the option to change operating regimes at pre-specified discrete decision
times tn = n∆t, n = 0, 1, ..., N − 1, where ∆t = T/N .

The commodity price at tn is denoted Sn. As in B&S, we assume that the commodity price follows a one-
dimensional geometric Brownian motion. In a discretised form, it is given by

Sn+1 = Sne

(
r−δ−σ22

)
∆t+σ(Wn+1−Wn)

, Wn+1 −Wn ∼ N (0,∆t) i.i.d. (1)

where r is the risk-free rate, δ is the instantaneous convenience yield of the commodity, σ is the volatility of
the spot price S.

We define the set of operating regimes as Z = {o, c, a}, where o, c and a denote an open (operating), a
temporarily closed and an abandoned mine respectively. The change of the operating regime at time tn from
the regime i ∈ {o, c} to j ∈ Z incurs the switching cost k(tn, i, j) = k(0, i, j)eπtn , where π is the inflation
rate. k(tn, i, i) = 0 if no switching occurs.
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The discretised remaining reserve is given by Qn+1 = Qn − q∆t1{in = o}, where q is a constant extraction
rate. The maximum number of possible reserve states is J = Q0/(q∆t). At time tn, the feasible reserve
levels areQn = {(J − k)q∆t, k = 0, 1, ...,min[n, J ]}. At each decision time, only feasible reserve levels are
considered.

The cash flow Πi(tn, Sn) in the operating regime i ∈ Z between two decision times [tn, tn+1), n = 0, ..., N−1
is given by

• For an open mine: Πo(tn, Sn) = q(Sn − Atn) − Tax(Sn), where Atn = A0e
πtn is the operating

cost, Tax(Sn) = p1qSn + p2q(Sn(1− p1)− An) is the total income tax and royalties, with p1 and p2

denoting the royalty rate and the income tax respectively.

• For a closed mine: Πc(tn, Sn) = −Mn, where M0 is the initial maintenance cost, and Mn = M0e
πtn

is the after-tax maintenance cost.

• Πa(tn, Sn) = 0;

We denote by V (tn, Sn, Qn, i) the value of the mine at tn when the commodity price is Sn, with Qn reserves
and status i and assume that V (T, SN , QN , i) = 0 (that is, the value is 0 after the expiration of mining licence).
The goal of the mining company is to maximize the value V (t0, S0, Q0, i) though the optimal strategy. Thus,
the Bellman value function for this problem is given by

V (tn, Sn, Qn, in−) = max
j∈Z

{
Πj(tn, Sn)∆t− k(tn, in− , j) + E

[
e−r̃∆tV (tn+1, Sn+1, Qn+1, j)

∣∣∣∣Sn, Qn]} ,
where r̃ = r+ λ, in− denotes the operating regime right before the decision time tn, and λ is the property tax
rate, proportional to the project value.

3 NUMERICAL METHOD

3.1 Regression Monte Carlo Approach

Regression Monte Carlo approach is a versatile simulation-based technique based on the approximation of the
continuation function (the last term in Bellman equation at the end of Section 2) via basis functions. One of
the earlier regression Monte Carlo methods, known as least-squares Monte Carlo (LSMC), was proposed by
Longstaff and Schwartz (2001) for valuation of American option, and has become popular for stochastic con-
trol problems in minerals industries due to its flexibility and ease of implementation (see, e.g., Dimitrakopoulos
and Abdel Sabour (2007), Tsekrekos et al. (2012),Bao et al. (2013), Tarnopolskaya et al. (2015)) .

The regression Monte Carlo method combines two parts:

1. In the forward loop, the algorithm generates M Monte Carlo paths of the commodity prices {Smn : m =
1, 2, ...,M ;n = 0, 1, ..., N} with the same initial price Sm0 = S0 forward in time.

2. In the backward loop, the continuation functions Φ(tn, Sn, Qn, i) are computed by regressing the dis-
counted realized cashflows along the simulated paths onto a set of selected basis functions {φl(Smn )}
for each operating regime i ∈ {o, c} and each feasible reserve level Qn ∈ Qn. At time tn, for each
simulated path Smn , an optimal switch from the current operating regime i to another operating regime
j happens if and only if

Πi(tn, S
m
n )∆t+ Φ (tn, S

m
n , Qn, i) < max

j 6=i
[Πj(tn, S

m
n )∆t− k(tn, i, j) + Φ (tn, S

m
n , Qn, j)] .

Despite its advantages, LSMC has two significant drawbacks. Specifically, (1) the choice of basis function is
problematic; and (2) increasing the size of the basis may cause overfitting problem, thus affecting the accuracy.
In this paper, we use two recent advanced techniques in order to overcome the convergence difficulties and
to improve the accuracy of the numerical algorithm: (1) we adopt a local basis function method (Bouchard
and Warin (2012)) which overcomes an issue with appropriate selection of basis function in LSMC; (2) we
implement a memory reduction method to reduce memory consumption. Both methods are described in more
details in Langrené et al. (2015). The improved accuracy achieved as a result of these modifications is espe-
cially important for approximating the switching surfaces.
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3.2 Constructing the Switching Surfaces

The structure of the Bellman value function for optimal resource extraction problem (Section 2) suggests that
at each decision time the optimal operating regime depends on the operating regime at the previous decision
time, the current commodity price, the remaining inventory and the time to the end of the horizon. We then
define the switching sets Λi,j(tn), n = 1, ..., N − 1,, from one operating regime i ∈ {o, c} to another j ∈ Z,
as the locus of all combinations of simulated commodity price and feasible reserve level (Smn , Qn);m =
1, ...,M,Qn ∈ Qn, where it is optimal to switch from the regime i to j at time tn (note that this definition
includes non-switching set i to i). The regression Monte Carlo algorithm described in the previous section can
be used to establish a mapping between the simulated state variables and the optimal operating regimes, and
therefore to produce the switching sets.

There are generally three switching sets at each decision time from the operating mode i = o: Λo,c(tn, ),
Λo,a(tn), Λo,o(tn), and three switching sets from the operating mode i = c: Λc,a(tn), Λc,o(tn) Λc,c(tn).
Our numerical results suggest that the switching sets form connected components in (S,Q) plane and do not
overlap. It is then straightforward to construct the boundaries between the switching sets. For a given decision
time tn, the switching boundaries between the operating modes i and j are the critical commodity prices
S∗i,j(Qn) that trigger a regime switch from i to j when the commodity price crosses in the direction from the
optimal region i to j.

In this paper, in order to increase the number of points in each switching set, instead of generating the switch-
ing sets from the optimal strategies on the realised paths (as in Tarnopolskaya et al. (2015)), we generate
’hypothetical’ switching sets based on optimal strategies obtained by using the continuation functions com-
puted at each time step tn during the backward induction process for every feasible reserve level and every
operating mode at the previous time step. We can see that for large switching sets, the switching boundaries
are sufficiently smooth (see the two figures on the left-hand side of Fig.1).

By superimposing the switching sets Λo,c(tn, ), Λo,a(tn), Λo,o(tn) and Λc,a(tn), Λc,o(tn) Λc,c(tn), a complete
set of decision regions can be produced. This is illustrated in the figure on the right-hand side of Fig.1. New
regions of optimal decisions produced in this way are: hysteresis band, abandon from close and abandon from
open.

The switching surface S∗i,j(tn, Qn) combines all the switching boundaries S∗i,j(Qn) for all decision times.

4 NUMERICAL RESULTS AND DISCUSSION

In this section we: (1) validate our numerical implementation by benchmarking to the solution of the classical
infinite horizon finite inventory natural resource investment problem by B&S; and (2) visualize the switching

Figure 1. Constructing the switching regions for a given decision time (t = 45); 106 Monte Carlo simulations.
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Figure 2. Switching surfaces for T = 60, two decisions per year, 106 Monte Carlo paths.

surfaces and discuss their structure.

4.1 Benchmarking to Infinite Horizon Problem

B&S studied the continuous, infinite horizon, finite resource copper mine valuation problem. In order to test
our method, we approximate the solution of this infinite horizon continuous problem by that of a finite horizon
discrete time stochastic control problem described in Section 2. We use the parameters of this model as in
B&S: q = 106 pounds/year, Q0 = 150 × 106 pounds, A0 = $0.5/pound, k(0, o, c) = k(0, c, o) = $200 000,
k(0, o, a) = k(0, c, a) = $0, M0 = $500 000/year, σ = 0.08, δ = 0.01, r = 0.1, p1 = 0.02, p2 = 0.5,
π = 0.08. A good agreement with B&S is achieved for a 60-year time horizon with 10 decisions per year
(N = 600) and with L = 20 local basis functions described in Section 3.1 (see Table 1). We can see that the
agreement with B&S is better than in Tarnopolskaya et al. (2015), where a shorter horizon and smaller number
of annual decisions were used.

Table 1. Comparison with benchmark results

Initial Price B & S ($millions) Our results ($millions)
($) Open Closed Open Closed
0.4 4.15 4.35∗ 4.13 4.33∗

0.5 7.95 8.11 7.93 8.08
0.6 12.52 12.49 12.52 12.49
0.7 17.56 17.38 17.56 17.39
0.8 22.88∗∗ 22.68 22.88∗∗ 22.68
0.9 28.38∗∗ 28.18 28.40∗∗ 28.20
1 34.01∗∗ 33.81 34.03∗∗ 33.83

Note: ∗ Optimal to close, ∗∗ optimal to open.

4.2 Switching surfaces

For the exhaustible resource extraction problem described in Section 2, the switching boundaries are gener-
ally functions of both the time tn and the remaining reserve Qn and represent two-dimensional copper price
surfaces. Fig. 2 shows four switching surfaces (”c → o”,”o → c”,”o → a”, ”c → a”) for the mine valuation
problem with 60-year time horizon (T = 60) and 2 decision times per year (∆t = 1/2) from two different
angles.
An interesting feature in Fig. 2 is a sharp decrease w.r.t. Q of the switching surfaces ”o → c” (red) and
”c → o” (blue) along the line from (t = 45, Q = Q0) to (t = T,Q = 0). After the sharp decrease, the
switching surfaces become independent of the remaining reserve. The explanation of this effect is as follows:
at a time when the remaining reserves is sufficient for continuous operation until the the end of time horizon,
the reserve is no longer a constraint for the operating decisions and therefore the switching surfaces become
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Figure 3. Switching boundaries as functions of remaining reserves Q at different decision times t, computed
from one million Monte Carlo paths. (More detailed information of the coloured regions can be seen in Fig.1.)

independent of Q. A decrease in the switching surfaces values at these times indicates that it is beneficial to
keep the mine open at lower commodity prices when plenty of reserves are left.

In Fig. 2, a hysteresis region between the switching surfaces ”o → c” and ”c → o” can be observed, which
is due to the switching cost (see discussions in Carmona and Ludkovski (2008), Tarnopolskaya et al. (2015)).
To further investigate the structure of the switching surfaces, we plot the two-dimensional cross-sections at
different decision times during the planning horizon in Fig. 3. We notice the following features:

1. All the switching boundaries move upwards as time increases.

2. After t = 45, horizontal segments of the switching boundaries appear, starting at the remaining reserve
level which is sufficient for continuous operation for the remaining time horizon (see discussion above).

3. The concave down sections of the switching boundaries ”o → c” (red) and ”c → o” (blue) suggest that
the optimal strategy for higher reserve levels is to wait for prices to go up. However, as the remaining
reserves decreases, it becomes beneficial to open the mine at lower commodity prices.

4. Towards the end of time horizon, the switching boundary ”o → c” (red) disappears, which means it is
not optimal to close an open mine near the end of time horizon. In such situations, an open mine should
be either kept open or be abandoned. This result is consistent with that in Tarnopolskaya et al. (2015).

5. A sharp increase in the ”c → a” switching boundaries near Q = 0 in the last three subfigures of Fig.
2 indicates that it becomes beneficial to abandon the mine when the reserve is sparse and the price is
not sufficiently high. Similarly, a sharp increase in the ”c → o” near Q = 0 in the last three subfigures
of Fig. 2 indicates that much higher commodity prices are required for reopening the mine to become
optimal when the reserve is sparse and the end of the time horizon approaches.
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Remark 1. Our numerical analysis suggests that the Monte Carlo sample size required to produce smooth
switching surfaces is generally larger than that required to produce sufficiently accurate valuation results.

Remark 2. The switching surfaces are computed for a given initial commodity price S0. However, numerical
results suggest that the switching surfaces do not change with the change in the initial commodity price.

5 CONCLUSION

An improved methodology for construction of the switching surfaces dependent on both the remaining reserve
level and time is presented, based on the advanced regression Monte Carlo method. Optimal switching surfaces
can be used by mining companies as an efficient and intuitive decision support tool for optimal resource
extraction under uncertainty. The switching surfaces provide insight into the optimal strategies under different
conditions and can be used by companies to benefit financially from dynamic strategies.
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