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Abstract Mining operations are affected by significant uncertainty in commodity prices, combined with ge-
ological uncertainties (both in quantity and quality of the available reserves). Technical difficulties and costs
associated with ore extraction together with a highly uncertain environment present significant risks for prof-
itability of mineral projects. Optimising operating strategies in response to changing market conditions and
information about the available reserves is crucial for project profitability in the face of uncertainty.

A natural resource extraction problem can be viewed as a stochastic optimal control (real options) problem,
with extraction rate representing a control variable. In a finite horizon, finite reserve setting, an additional com-
plexity arises from the need to consider a large number of feasible remaining reserve levels, which significantly
increases the computational complexity of the algorithms.

Extraction of a natural resource problems have attracted the attention of researchers in the fields of real options
and stochastic optimal control since the 1980s. However, there is still no computational framework available
that would allow realistic high-dimensional real options problems in minerals industry to be solved.

Over the last decade, the approach based on value function approximation via basis functions has attracted
significant attention from financial applications, and has given rise to a class of methods known as regression
Monte Carlo methods. Regression Monte Carlo is a very versatile simulation-based technique. It can deal with
a rich description of the mining problem, and very elaborate models for the risk factors.

In this paper, we propose to combine several crucial improvements to make the regression Monte Carlo method
practical for multi-dimensional models:

1) Firstly, we avoid the discretisation of reserve level by using the control randomization technique. First,
the reserve is replaced by a dummy random factor during the forward loop. Then, this variable is included
into the regression factors during the backward loop, and optimised. Randomization also allows dealing with
geological uncertainties in the estimated reserve.

2) Then, to avoid the full storage of the sample paths, we implement a memory reduction method. The idea
is to store the seeds of the random number generator during the forward loop, in order to reproduce the paths
exactly during the backward loop. This drastically reduces memory consumption.

3) Finally, to solve once and for all the problem of choice of regression basis, we perform non-parametric
adaptive local regressions, which automatically adapt to the data and the function to regress. Its numerical
efficiency is ensured by a novel fast implementation of the method.

We explain how these efficient implementation techniques allow us to tackle a stylized mineral extraction
problem under both price and geological uncertainties. One key advantage of the proposed improvements is
that they are easily extendable to higher dimensions and make it possible to tackle realistic multi-dimensional
real option problems. For the mining industry, this means better estimates for the value of a mine, with
geological and price uncertainties taken into account. Beyond that, it means better dynamic strategies for mine
operation, with explicit rules on how to deal with changing circumstances.
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1 INTRODUCTION

It is broadly acknowledged that mining operations are highly affected by risk and uncertainty, with commodity
price and geological uncertainty (in both quantity and quality of the estimated reserve) being the most rele-
vant risk factors that attract considerable attention in the research literature (see Castillo and Dimitrakopoulos
(2014), Ndiaye and Armstrong (2013) and the references therein). The main obstacle to include multiple un-
certainties into real options analysis is that existing real options/stochastic control methodologies are generally
not capable of dealing with more than three stochastic risk factors.

Over the last decade, the approach based on value function approximation via basis functions, introduced by
Longstaff and Schwartz (2001) under the name Least-Squares Monte Carlo (LSMC), has attracted significant
attention for financial applications. LSMC is a very versatile simulation-based technique which is easily
extendable to higher dimensions. It has been extended to more general regression methods (Regression Monte
Carlo) and to more general stochastic control problems, such as optimal switching problems, which include
minerals real options problems when a discrete grid is used to describe the possible reserve levels (see, e.g.,
Dimitrakopoulos and Abdel Sabour (2007), Bao et al. (2013)). However, a few bottlenecks arise for high-
dimensional optimal switching problems: (a) computational complexity due to the number of switching levels
(e.g. reserve levels); (b) memory complexity; and (c) difficulty of choosing an appropriate regression basis.

In this paper, we propose to combine several crucial improvements to make the regression Monte Carlo method
practical for multi-dimensional models in the minerals applications: control randomization, memory reduc-
tion and fast adaptive local regression. We show that the regression Monte Carlo algorithm with the above
improvements can easily accommodate realistic models of stochastic commodity price dynamics with jump,
in addition to geological uncertainties (in both the quality and quantity of estimated reserve), and can deal with
many more risk factors if needed.

The paper is organized as follows. Section 2 provides the problem formulation. It shows how taking a few
additional risk factors into account allows us to account for geological uncertainties in a stylized fashion.
Section 3 describes a few methods to make high dimensional problems manageable by regression Monte Carlo,
namely control randomization, memory reduction and fast local polynomial regression. Section 4 provides a
few numerical results and a discussion of the potential paths to explore in the future. Finally, Section 5
concludes this paper.

2 PROBLEM FORMULATION

We study how extraction decisions for a given mine should be made to maximise expected financial gains over
the finite planning horizon, with flexibility to operate, temporarily close, restart or permanently abandon the
mine. We extend the model used in Chen et al. (2015) to include a more realistic mean reversion stochastic
process with jump to describe the ore price S. We also consider the estimated reserve Q and the extraction
rate q as additional stochastic risk factors. We model the estimated reserve Q as a geometric Brownian motion
with jump, in order to account for both small random adjustments in the estimated remaining reserve and sharp
changes due to unexpected new discovery or unforeseen early depletion. In order to account for the uncertainty
related to ore grade, we consider the extraction rate as a stochastic variable, thus accommodating for uncertain
content of metal in the ore. Together, Q and q account for geological uncertainties related to both quantity and
quality of ore. We model the dynamics of risk factors as follows:

dSt = κS
(
S̄ − St

)
dt+ σSStdWS(t) + (JS − 1)StdPS(t) , t ∈ [0, T ] (2.1)

dqt = κq (q̄ − qt) dt+ σqqtdWq(t) , t ∈ [0, T ] (2.2)
dQt = −qt1{αt=o}dt+ σQ1{αt=o}QtdWQ(t) + (JQ − 1)1{αt=o}QtdPQ(t) , t ∈ [0, T ∧ τd] (2.3)

where W = (WS(t),Wq(t),WQ(t))t∈[0,T ] is a 3-dimensional Brownian motion, σS , σq and σQ are constant
volatilities, S̄ and q̄ are constant average levels, τd := inf {t ≥ 0;Qt = 0} (depletion) and 1{·} is the indicator
function. α = (αt)0≤t≤T is the dynamic control, or policy which takes values in the set of operating regimes
Z = {o, c, a}, where o, c and a denote an open (operating), a temporarily closed and an abandoned mine
respectively. The control α is a function of t, S, q and Q, as decisions take all the available information into
account. JA = eφA , φA ∼ N

(
−σ2

JA
/2, σ2

JA

)
, A ∈ {‘S’,‘Q’} are jump components which occur at random

Poisson times

dPA(t) =

{
1 with probλAdt

0 with prob 1− λAdt.
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Let θ = [q,Q, i] be the state vector and θt = [qt, Qt, αt] be the state vector at time t. The value function of
the problem is then defined by:

V (t, S, θ) = sup
α∈A

E

∫ T∧τa

t

e−r̃(s−t)Π(s,Ss,αs)ds−
∑

t≤τn≤T∧τa

e−r̃(τn−t)k(τn,ατ−
n
,ατn)|(St, θt)=(S, θ)

 (2.4)

where τa := inf {t ≥ 0;αt = a} (abandonment). The notations used to define the value function are the same
as in Chen et al. (2015): r̃ = r + λ is the discount rate, where r is the risk-free rate and λ is the property tax
rate; Π(s, Ss, αs) is the instantaneous cash-flow at time s when the metal price is equal to Ss and the operating
regime is equal to αs ∈ Z; k(τn, ατ−

n
, ατn) is the switching cost at stopping time of switching τn from regime

ατ−
n

to ατn .

3 NUMERICAL METHODS

The problem formulation can be seen as an extension of Chen et al. (2015), where only two state variables
were considered: a stochastic exogenous state variable S and a deterministic endogenous state variable Q.
Here we have three main risk factors: S is a stochastic exogenous state variable that features jumps and mean-
reversion; q is now also a stochastic exogenous state variable. Finally, Q is a stochastic endogenous state
variable with jumps. Dealing with dynamics with jumps is not a problem when using the regression Monte
Carlo approach. However, dealing with a stochastic endogenous state variable is a major difficulty, as the
reserve discretization from Chen et al. (2015) cannot be easily used. Our solution is to replace it with the
control randomization technique, described in Subsection 3.1. This technique requires the use of an additional
dummy stochastic factor, making our problem four-dimensional. Consequently, the memory gains provided
by the memory reduction method described in Subsection 3.2 can become substantial. Moreover, guessing
a suitable regression basis may become difficult, which makes the fast adaptive local regression described in
Subsection 3.3 very useful.

3.1 Control randomization

The control randomization technique, pioneered in Kharroubi et al. (2014), makes it possible to solve stochastic
control problems with endogenous risk factors by a probabilistic algorithm (Regression Monte Carlo). A
risk factor is endogenous when its dynamics depend on the control, which is precisely the case here for the
estimated reserve Q (2.3). More generally, let X be a (possibly multivariate) endogenous risk factor dXα

t =
b (t,Xα

t , αt) dt+ σ (t,Xα
t , αt) dWt , X

α
0 = x0 , where α is the control. Suppose that one wants to solve the

following stochastic control problem:

v (t, x) = sup
α

E

[∫ T

t

f (s,Xα
s , αs) ds+ g (T,Xα

T ) |Xα
t = x

]
(3.1)

To do so, one can still use a Monte Carlo algorithm. The key ingredient is control randomization, ie. the state
variable is first simulated with a dummy random control α̃:

dX̃t = b
(
t, X̃t, α̃t

)
dt+ σ

(
t, X̃t, α̃t

)
dWt , X̃0 = x0 (3.2)

Then, one can implement the backward induction described in Algorithm 1. In the spirit of Longstaff and
Schwartz (2001), Algorithm 1 regressed realized cash-flows instead of value function, which requires path
recomputation when risk factors are endogenous.

3.2 Memory reduction

The Regression Monte Carlo algorithm 1 contains a forward loop and a backward loop. During the forward
loop, all the (randomized) risk factors are simulated until maturity T . Then, this sample of paths is used during
the backward loop. The usual approach is to store all the paths after the forward loop, for later use during the
backward loop. This requires a substantial O (N ×M) in memory size, where N is the number of time steps
and M is the number of Monte Carlo paths. Fortunately, this can be reduced to O (N +M) thanks to the
memory reduction method proposed in Aı̈d et al. (2014) for the Euler-Maruyama scheme and in Hu and Li
(2014) for the Milstein scheme.
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Algorithm 1 Regression Monte Carlo (Control randomization & Path recomputation)
1. At time tN = T

Set S
(
tN , X̃

m
tN

)
:= g

(
tN , X̃

m
tN

)
, m = 1, . . . ,M

2. At time ti, i = N − 1, . . . 1

(a) [Conditional expectation approximation (state & control)]
Approximate Φti(X̃ti , α̃ti) := E

[
S(ti+1, X̃ti+1)

∣∣∣X̃ti , α̃ti

]
by regressing the sample{

S(ti+1, X̃
m
ti+1

)
}

against
{(
X̃m
ti , α̃

m
ti

)}
and call Φ̂ti(X̃

m
ti , α̃

m
ti ) the resulting approximations.

(b) [Optimal strategy computation]
˜̃Xm
ti ← X̃m

ti and S
(
ti, X̃

m
ti

)
← 0.

For tj = ti, . . . , tN :

i. Compute α̂(tj ,
˜̃Xm
tj ) := arg supa∈A

{
f(tj ,

˜̃Xm
tj , a)∆tj + Φ̂tj ( ˜̃Xm

tj , a)
}

using Φ̂tj .

ii. S
(
ti, X̃

m
ti

)
← S

(
ti, X̃

m
ti

)
+ f(tj ,

˜̃Xm
tj , α̂(tj ,

˜̃Xm
tj ))∆tj .

iii. Update ˜̃Xm
tj+1
← F

(
˜̃Xm
tj , α̂(tj ,

˜̃Xm
tj ),∆Wm

tj

)
.

(c) S
(
ti, X̃

m
ti

)
← S

(
ti, X̃

m
ti

)
+ g(tN ,

˜̃Xm
tN ).

3. At time t0 = 0

(a) [Conditional expectation approximation (control only, as x0 is deterministic)]
Approximate Φt0(x0, α̃t0) := E

[
S(t1, X̃t1) |α̃t0

]
by regressing

{
S
(
t1, X̃

m
t1

)}
against

{(
α̃mt0
)}

.

(b) [Optimal strategy computation]
Compute α̂(t0, x0) := arg supa∈A

{
f(t0, x0, a)∆t0 + Φ̂t0(x0, a)

}
and recompute X̃ and S.

Then v̂ (t0, x0) := 1
M

∑M
m=1 S

(
t0, X̃

m
t0

)
is an estimate of v (t0, x0)

Let us summarize the method for the Euler-Maruyama scheme applied to equation (3.2). The application of
the Euler scheme to this equation yields:

x̃jti+1
= f(x̃jti , ε

j
i , α

j
i ) (3.3)

f (x, ε, α) := x+ b (ti, x, α) ∆ti + σ (ti, x, α) ε
√

∆ti (3.4)

where ti belongs to the time grid Π = {0 = t0, t1, . . . , tN = T} of the scheme, and j ∈ [1,M ] is the path
index. For every i and j, εji is drawn from a Gaussian distribution, and αji is drawn from the dummy distri-
bution. Suppose that for any (ε, α), the function x 7→ f (x, ε, α) is invertible (call finv its inverse). Then,
starting from the final value xjtN of the sequence (3.3), one can recover the whole trajectory of X:

xjti = finv(xjti+1
, εji , α

j
i ) (3.5)

provided one can recover the previous draws (εjN−1, α
j
N−1),. . ., (εj0, α

j
0), which is easily achieved though the

storage of the seeds of the random number generator, as shown by Algorithm 2 (initialized with X [j] ← x0
∀j = 1, . . . ,M ).

The first column of Algorithm 2 corresponds to the Euler scheme, with the addition of the storage of the seeds.
At the end of the first column, the vector X contains the last values Xj

T , j = 1, . . . ,M . From there, one can
recover the previous values Xj

ti , i = N − 1, . . . , 0, j = 1, . . . ,M as explained in the second column.

3.3 Adaptive local regression

The Regression Monte Carlo algorithm 1 requires a regression for each time step of the backward loop. How
the regression is performed is therefore of utmost importance in practice. Consider the simple example of
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Algorithm 2 Euler Scheme Inverse Euler Scheme

1 % LOOP 1: E u l e r scheme
2 f o r i from 0 t o N−1
3 S [ i ] <− g e t s e e d ( )
4 f o r j from 1 t o M
5 E <− randn ( d )
6 A <− r a n d a ( d )
7 X[ j ] <− f (X[ j ] , E ,A)
8 end f o r
9 end f o r

10 S [N] <− g e t s e e d ( )

1 % LOOP 2: I n v e r s e E u l e r scheme
2 f o r i from N−1 down t o 0
3 s e t s e e d ( S [ i ] )
4 f o r j from 1 t o M
5 E <− randn ( d )
6 A <− r a n d a ( d )
7 X[ j ] <− f i n v (X[ j ] , E ,A)
8 end f o r
9 end f o r

10 s e t s e e d ( S [N] )

valuing an American put option. Figure 3.1 displays the first regression of the backward loop (ie. performed
on the last time step) for two different kinds of regression.

Figure 3.1a displays a standard regression with global polynomials, as proposed in Longstaff and Schwartz
(2001). This method is simple and easy to implement, but has major drawbacks. Firstly, the boundaries cannot
be fitted well, as the payoff is asymptotically linear, unlike polynomials of order higher than one. Secondly,
and more problematically, the central part is not fitted well either, as a polynomial cannot reproduce an abrupt
slope change very well. Using polynomials of higher degree does not mitigate these problems, unless the
sample size is drastically increased at the same time.

Figure 3.1b displays a non-parametric locally linear regression, as defined for instance in Hastie et al. (2009),
Chapter 6. The fit is spectacularly good, both the central part and the boundaries. Moreover, compared to other
local regressions like the previously proposed piecewise regression on disjoint domains (Bouchard and Warin
(2012), Jain and Oosterlee (2012)), there is no discontinuity problem. We argue that this kind of regression is
the most suitable for the Regression Monte Carlo algorithm, especially when the payoff or intermediate cash
flows are asymptotically linear (which is almost always the case in practice).

(a) Global polynomial regression (degree 3) (b) Locally linear regression

Figure 3.1. Global regression vs. local regression

The concern one may have with locally linear regression is about speed. Indeed, a naive implementation of
it would require O(N2) operations, where N is the number of points. Fortunately, there exists a smarter
implementation to bring it down to a much faster O(N log(N)). We describe below the method for univariate
data. The extension to multivariate data is developed in Langrené (2015).

Suppose that, given an input x = (x1, . . . , xN )
>, one wants to predict an output y = (y1, . . . , yN )

> using
(univariate) locally linear regression, ie. to compute, for each xi, 1 ≤ i ≤ N ,

min
αi,βi

1

N

N∑
j=1

Kh (xi, xj) [yj − αi − βixj ]2 ,
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where Kh is a kernel function with bandwidth h. As shown for example in Chapter 6 of Hastie et al. (2009),
computing the optimal regression coefficients α̂i and β̂i boils down to compute, for every 1 ≤ i ≤ N , sums
of the type

∑N
j=1 x

px
j y

py
j Kh(xi, xj) for integer powers px ≥ 0 and py ≥ 0. A naive implementation of these

sums would require O(N2) operations (for each xi, compute Kh(xi, xj) for every xj). Fortunately, there
exists a faster method to compute these sums. Suppose, without loss of generality1, that the kernel function is

the Epanechnikov kernel Kh(xi, xj) = 3
4

[
1−

(
xi−xj

h

)2]
1{|xi−xj |≤h}. Then, developing (xi − xj)2,

N∑
j=1

xpxj y
py
j Kh(xi, xj) =

3

4

(
1− x2i

h2

)
S(xi, px, py) +

3

2

xi
h2
S(xi, px + 1, py)− 3

4h2
S(xi, px + 2, py)

where S(xi, px, py) :=
∑N
j=1 x

px
j y

py
j 1{|xi−xj |≤h}. Now, suppose that the sample (xi)i=1,...,N is sorted:

x1 ≤ x2 ≤ . . . ≤ xN (sorting costsO(N log(N)) operations). Then one can quickly compute S(xi+1, px, py)
from S(xi, px, py), as

S(xi+1, px, py) = S(xi, px, py)−
N∑
j=1

xpxj y
py
j 1{xi−h≤xj≤xi+1−h} +

N∑
j=1

xpxj y
py
j 1{xi+h≤xj≤xi+1+h}.

This idea of “sliding the kernel” and updating the sums was proposed in Seifert et al. (1994) for univariate
local regression, and extended to multivariate local regression in Langrené (2015), along with several practi-
cal improvements (scaling, change of basis, dimension reduction, adaptive bandwidth to nearest neighbours,
shrinkage, etc.)

4 NUMERICAL RESULTS AND DISCUSSION

The implementation improvements described in Section 3.3 allowed us to successfully implement and solve
the multi-dimensional stochastic control problem introduced in Section 2.

As many factors enter into play, involving many parameters, a thorough analysis of the outputs of the algorithm
with sensitivity analyses is beyond the scope of this short paper, all the more so as the high-dimension makes
it difficult, for instance, to display graphically the different regimes of the optimal policy, as was done for the
two-dimensional mining problem studied in Chen et al. (2015). Instead, we will only provide a foretaste of the
potential uses of the algorithm and, beyond valuation, the challenges ahead.

Table 4.1 provides the expected mean value and quantile values (P (V ≤ q(x%)) = x%) of the mining project
described in Section 2 using the tools from Section 3, with the following parameters: S0 = 0.5 (local cur-
rency), S̄ = S0, κS = 0.1, σS =

√
0.08 ' 0.28, λs = 0.1, σJS = 0.1, q0 = 10 (millions of tons), q̄ = q0,

κq = 0.1, σq = 0.1, Q0 = 150 (millions of tons), σQ = 0.1, λQ = 0.1, σJQ = 0.1

Table 4.1. Mean and quantiles of the mining project value (in millions)

q(1%) q(10%) q(25%) q(50%) mean q(75%) q(90%) q(99%)
−5.9 −3.4 −1.8 0.9 8.1 11.4 27.7 80.9

The most striking observation from Table 4.1 is the positive skew of the mine value, as shown by the difference
between the mean value (8.1) and median value (0.9) of the mine. This is not surprising, as similarly to
Brennan and Schwartz (1985) and Chen et al. (2015) the possibility to abandon the mine limits the downside
of the project value, but the inclusion of geological uncertainties reinforces this trend (q(99%) = 80.9 '
10 ×mean). This observation suggests that beyond a few risk factors, simple expectation of cash-flow as in
(2.4) may be too rudimentary for project valuation. Risk preferences may be taken into account in (2.4) using
existing methods (recursive utility, constrained optimization, viability, etc.). One could even include partial
hedging against the uncertainties for which financial products are available (such as metal price).

Numerical methods from Section 3.3 make it possible to tackle high-dimensional stochastic control problem
by regression Monte Carlo. Therefore, the remaining challenges do not lie in the computational side, but more
in the modelling side. Beyond taking risk preferences into account, devising realistic dynamics for the risk
1The methodology described in this subsection works for many kernel functions with finite support: uniform, triangular, biweight,
triweight, etc.
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factors may require more work, all the more so as the very long time horizon (several decades) suggests that
some very long term macroeconomic effects should be factored in (evolution of world consumption, global
depletion, etc.). Moreover, some risk factors such as estimated reserves would require data from mining
companies, while such uncertainties as social license to operate remain a challenge to describe mathematically.

5 CONCLUSION

This paper describes several improvements to the Least-Squares Monte Carlo algorithm (control randomiza-
tion, memory reduction, fast adaptive local regression) to make it suitable for high-dimensional stochastic
control problems. We implemented this technique for a mine valuation problem, for which both price and
geological uncertainties are considered. The method proposed can easily consider many more risk factors if
needed. Our results suggest that realistic mine valuation under several sources of uncertainties is now com-
putationally feasible, so that more effort can be spent on the modelling side of the problem. For mining
companies, this suggests that real option algorithms are now ready to help them make the most out of their
assets over time.
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Aı̈d, R., L. Campi, N. Langrené, and H. Pham (2014). A probabilistic numerical method for optimal multiple
switching problems in high dimension. SIAM Journal on Financial Mathematics 5(1), 191–231.

Bao, C., M. Mortazavi, S. Northey, T. Tarnopolskaya, A. Monch, and Z. Zhu (2013). Valuing flexible oper-
ating strategies in nickel production under uncertainty. In MODSIM2013, 20th International Congress on
Modelling and Simulations, pp. 1426–1432.

Bouchard, B. and X. Warin (2012). Monte-Carlo valorisation of American options: facts and new algorithms to
improve existing methods. In R. Carmona, P. Del Moral, P. Hu, and N. Oudjane (Eds.), Numerical Methods
in Finance, Volume 12 of Springer Proceedings in Mathematics.

Brennan, M. and E. Schwartz (1985). Evaluating natural resource investment. Journal of Business 58(2),
135–157.

Castillo, F. and R. Dimitrakopoulos (2014). Joint effect of commodity price and geological uncertainty over
the life of mine and ultimate pit limit. Mining Technology 123(4), 207–219.

Chen, W., T. Tarnopolskaya, N. Langrené, and T. Lo (2015). Switching surfaces for optimal natural resource
extraction under uncertainty. In Proceedings of the 21st International Congress on Modelling and Simula-
tion (MODSIM 2015).

Dimitrakopoulos, R. and S. Abdel Sabour (2007). Evaluating mine plans under uncertainty: can the real
options make a difference? Resources Policy 32, 116–125.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction (2nd ed.). Springer Series in Statistics. Springer.

Hu, W. and S. Li (2014). The forward-path method for pricing multi-asset American-style options under
general diffusion processes. Journal of Computational and Applied Mathematics 263, 25–31.

Jain, S. and C. Oosterlee (2012). Pricing high-dimensional Bermudan options using the stochastic grid method.
International Journal of Computer Mathematics 89(9), 1186–1211.
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