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Abstract: Bushfires are highly complex events to both measure and predict. We want our models to predict
certain observable features of fires, but which features to use is a question with many possible answers. It is
important to understand both the skill of our bushfire spread prediction models, and the level of uncertainty
inherent in their results. However, this can be difficult to quantify even when the desired features are known.
One challenge is obtaining complete observed data. A second is knowing how to determine appropriate com-
parative metrics for predictions and observations that evolve over space and time. Further to this, we need
to consider the intended use case of the metrics. Viability of a metric may depend on whether it is needed
to inform: machine decision-making, researchers familiar with the subject area, or public stakeholders and
decision makers. Here, we illustrate some problems and solutions that we have encountered in determining
metrics appropriate to bushfire modelling, along with our proposed approach to measuring model skill. In
particular we focus on metrics evaluating predicted bushfire perimeters, as opposed to other aspects of fire
behaviour such as fire intensity, flame depth and height, etc.

We model the evolution of a bushfire perimeter through time, given sparse data and incompletely observed
perimeters. Considering the intended use cases of our comparison metrics, we have to communicate our model
skill with human stakeholders and also use these metrics to improve our models in a relatively automated way.
This adds an extra layer of complexity in selecting and applying metrics. Rather than focusing on a single
metric that will likely never meet all our needs, we instead propose a standard approach to the development
of metric sets appropriate to a problem. Our work utilises ideas from goodness-of-fit testing in the context of
posterior and prior predictive approaches. We use this approach to simultaneously develop metrics for both
human stakeholder and computational model development purposes.

In this paper, we demonstrate both visual and computational two-dimensional metric solutions, as well as a
scalar metric appropriate for different computational purposes. The scalar metric is one originally proposed
in Baddeley (1992) which has been previously applied to weather forecasting (Gilleland et al., 2008). We
also provide details on our standard approach, which could be extended to other spatio-temporal and complex
models.
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1 INTRODUCTION

Assessing, understanding and communicating model skill results is an extremely important, although some-
times ignored, component of scientific research. Without model skill assessment, there is no opportunity to
evaluate and build trust in the modelling results.

Many commonly reported and considered metrics of model skill such as the coefficient of variation (R2), χ2

goodness-of-fit test, or Root Mean Square Error (RMSE) evolved in the early and mid portions of the twentieth
century (D’Agostino, 1986). Such classical ideas often relate to hypothesis tests and p-values and represent
an overall, or summary, measure of discrepancy between models and truth/observations. The choice of such
broad tests across the results of a model has a two-fold motivation. First is that it is often useful to have an
overall picture of model performance, both as an assessment of the model and a tool to compare between the
performance of alternate models. Second, at the time they were developed they represented an efficient use
of available computing resources; generating multiple measures able to consider many different failure modes
would have been time-consuming with the existing computational resources.

Computation has now become less expensive allowing the development of more complex simulation models
and, consequently, so too has our ability to explore the skill of these models. In Bayesian statistics in particular
this has led to a re-examination of the purposes of model goodness-of-fit, and a proliferation of ideas and
approaches regarding how it can be achieved. In Gelman et al. (2003) the authors explore some of the reasoning
behind goodness-of-fit and model checking, identifying that the key question is rarely ‘Is our model true or
false?’, which is the answer given by many broad model skill statistics. Instead ‘Do the model’s deficiencies
have a notable effect on the substantive inferences?’ is found to be a more central question. The authors then
advocate for the use of posterior predictive approaches to model fit, where the core idea is that data simulated
based on a model should be representative of observed data. Multiple simulated data points should contain any
observed data points. While traditional goodness-of-fit test statistics can be calculated based on such posterior
predicted simulated data, it is equally possible to identify highly specific test statistics to evaluate a model’s
effectiveness at answering questions of importance.

While the textbook focuses on numerically defined test statistics, in Gelman (2003), the authors extend the
idea of model checking to include the role of, and development of tools for visual model checking. This in turn
aligns to ideas about plotting related to exploratory data analysis where scientific learning is considered an iter-
ative process between criticism and estimation (Box, 1980). As enablers of this process, visual representations
of data are being recognized as a type of metric themselves, useful in conveying model skill.

With a spectrum of choice extending from scalars to detailed visualizations, it is challenging to identify a
single best approach to reporting on model skill. If one chooses the scalar approach, it might have the
advantage of being recognizable to colleagues and simple to make judgements about. Communicating the
deeper meaning of such a number to outside stakeholders in a persuasive way is often challenging in this case.
Conversely, assessing a visualization, or comparing visualizations might be accessible and engaging to non-
specialist stakeholders. Such a visualization also might not easily lend itself to a determination of whether one
model formulation is objectively better than another.

Here, we advocate for a unified process for identifying appropriate tools for identifying model skill. Rather
than advocating for a best metric to be used in all cases, we propose that identifying a fit-for-purpose metric
through our process will give best results.

We feel a particular benefit of such an approach is that it opens up the use of visual tools in model skill
assessment. The revolution in new technologies such as personal devices, HD pictures and video; computing
power; etc. has resulted in much of society relying on more immersive experiences to engage them. If we can
engage people in scientific debate and thinking through use of similar tools, it serves the purpose of broadening
the audience of scientific model outputs, and strengthening the role of science in society.

2 CASE STUDY: BUSHFIRES

Being able to accurately predict locations of a fire front has many potential benefits such as better information
to create evacuation plans, the ability to support suppression strategies, and obtaining scientific insight about
bushfire behaviour. One of the challenges in assessing predictions of bushfire behaviours is incomplete data of
the fire propagation over time. For example, fire perimeter observations might only be taken at discrete/point
locations, such as when an observer directly reports a fire reaching a location. Even satellite and other images
of a fire can be obscured by smoke, making it difficult to observe a complete perimeter. Additionally, satellite
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Figure 1. A process for identifying features for appropriate measures of model skill.

or other scanning images are often only available at sparse time-points during the progress of a fire.

We demonstrate some concepts around model skill based on outputs from a level-set bushfire solver, Spark
(Miller et al., 2015). The model used in Spark to propagate a fire front relies on inputs including a model for a
fire front rate of spread and contributing factors such as fuel type, topography, etc. The model output is a fire
perimeter that evolves through time. We consider model skill of the solver from both a computational research
perspective and from a scientific communications perspective.

The goal is to integrate the Spark modelling engine into a fully Bayesian hierarchical model where observed
fire perimeters are used to provide inference about modelling parameters, such as wind, and consequently to
better predict fire spread. From a modelling perspective, factors like scale (size), translation (left-right shift),
and rotation (angular offset of spread) were all important features that needed to be captured in a scalar measure
of model skill. A number of scalar metrics for model skill in the fire modelling domain have been proposed and
demonstrated (Filippi et al., 2014). Other methods for shape analysis appropriate to fire perimeters also exist
in the analysis of digital images (eg. Baddeley (1992)) and statistical shape analysis in morphology (Dryden
and Mardia, 1998).

More subtle and nebulous features of fires also have to be considered, especially in the eyes of fire experts.
An end-goal for the Spark solver and associated Bayesian method is to support decision making that supports
resilience to bushfires. Consequently, fire experts, local communities, etc. need to be able to understand model
outputs well-enough to either trust them, or provide us with critique about where the model lacks skill.

3 METHODS

In Figure 1 we illustrate path of decisions that can be made around selecting an appropriate method of mea-
suring and reporting model skill. We identify a number of decision points on the pathway, and include non-
exhaustive lists of factors to take into consideration at each of these points. It is assumed that once a choice
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has been identified at a decision point that it carries through and influences available choices in the remaining
decisions. The goal of following the process is, at a minimum, to identify key features that are needed for a
model skill approach to be fit for purpose. Jakeman et al. (2006) recommend the consideration of a range of in-
dicators of model effectiveness, and provide a list of possible indicators for consideration. More aspirationally,
our goal would be to demonstrate or identify actual methods that could be used, along with information on
the strengths of each to further simplify the selection process. Each of the steps on the pathway is outlined in
greater detail below.

3.1 Intent

As discussed in Section 1, all model skill methods relate to an overall goal of model checking. Despite this,
the focus of this model checking can vary in different circumstances, and we identify sub-goals as including
direct comparison between models and facilitating critique and feedback about a model. Comparison between
models can be further separated into considerations such as “Am I doing better with these operational settings?”
to “Am I doing better than competing models?”

3.2 Who

At this decision point, the final consumer of the model skill representation needs to be identified. Although
we call this the ‘who’ decision point, we recognize that the final consumer of a model skill metric may not
be human. For example, the end recipient might be a computer program performing automated decision
support tasks. Even when the intended recipients are human, consideration needs to be taken in identifying
different sub-groups of individuals. For example, scientists researching in the same area will bring different
background knowledge about the research area, common problems, status quo approaches, etc., than a member
of the general public would. To use the same model skill approach for both specialists and the general public
might require an investment in teaching the general public core science/skill ideas around the research area;
alternately, it might indicate that an alternate representation of model skill would be appropriate.

3.3 Outputs

Identifying exactly what a model produces as output, or what it can be made to produce, is important in
determining what model skill approaches will be appropriate. A regression model that produces coefficient
weightings for variables is a substantially different output to a shape, such as is generated by our bushfire
model. We particularly highlight the importance of the dimensionality of the output, as when we reach sub-
Section 3.6 what tools are available to report on model skill will depend on what outputs can be created (or
imagined).

3.4 Platform

Where model skill will be presented can place expectations on what reporting tools are appropriate. Even
within a specific platform, such as a scientific conference, presentation type diverges between posters and oral
presentations. Answering who in sub-Section 3.2 also helps inform which platforms are appropriate.

3.5 Expectations

Knowing the choices made at the above decision points provide insights about potential audience expectations.
An audience of the general public might hope for an immersive experience such as an engaging illustration or
a video; if a model outputs a scalar such model skill options will be impossible. Conversely, even if an output
is spatio-temporal and can be animated, if the platform is a poster session at a scientific conference a static
approach must be used.

3.6 Tools

Knowing available tools in terms of existing model skill approaches is important. However, the best solution
might be to develop a new approach appropriate to all previous decisions. Scalar approaches such as R2 and
RMSE as were mentioned in Section 1 are common and generally well-understood by appropriate scientific
audiences. They do have limitations though, even for this purpose. Models are becoming increasingly complex
as we better understand how to use improvements in computational power, so results that can be reported
in space-time dimensions are increasingly common. While more traditional approaches can sometimes be
applied, there is much more scope with such results to use focused metrics to understand where models are
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Figure 2. Generalized outcomes that a scalar model skill assessment has to differentiate between.

weakest. Alternately, new tools to visualise data involving maps or animations can be used.

4 APPLICATION TO BUSHFIRE CASE STUDY

To demonstrate the process discussed in Section 3 we consider two different use cases for model skill based
on the bushfire modelling case study introduced in Section 2. In the first case we are looking for a measure
of model skill that can be used to automatically update bushfire modelling parameters by assessing which
parameters lead to better or worse results compared to the truth. In the second case, we are soliciting gen-
eral feedback from fire domain specialists about how a model ‘looks’ relative to their expectations about fire
behaviour.

4.1 Computer appropriate approach

As mentioned in Section 2 our goal is to find a single metric appropriate to use as part of a Bayesian hierarchical
model. Such a model is based on creating multiple simulations. Prior distributions would be elicited for input
parameters such as wind strength and direction, fuel, etc. based on some combination of empirical data and
expert judgement. Parameter sets drawn from such priors would then be used to identify those most consistent
with the observed data as assessed by an appropriate fit metric.

When considering the decision points it was intent, who, outputs, and expectations that were the biggest differ-
entiators between model skill methods we considered. Our goal was comparison between model runs in order
to determine which combinations of model parameter inputs lead to results that are closer to observational
ones. As our who was a computer, we needed to find a scalar representation of fit which would be easy to
assess algorithmically. Despite the goal for a scalar measure of model skill, the actual outputs of the Spark
model are fire perimeters, two-dimensional shapes, which are then evolved through the time dimension. This
high dimensional information had to be summarized.

In terms of our expectations of the model skill metric, it had to fulfil a number of key criteria. As stated, it
needed to summarize multi-dimensional information into a scalar. We also wanted it to be able to differentiate
between certain key potential cases, which are summarized in Figure 2.

Somewhat equivalently, we want our metric to be a true distance measure such that d(A,B) = d(B,A);
d(A,B) > 0 if A 6= B; d(A,B) = 0 if A = B; and d(A,B) ≤ (A,C) + d(C,B) where A and B are shapes
to be compared, and C is an intermediate shape between the two.

Finally, the metric needed to be computationally efficient, and account for missing data occurring in the ob-
served fire perimeters.

We considered a number of area based metrics (Filippi et al., 2014); statistical shape analysis approaches
(Dryden and Mardia, 1998); and one approach developed for black and white image analysis (Baddeley, 1992).
Ultimately, due to the clear criteria that had emerged in our development process, the Baddeley ∆ metric was
selected as fit-for-purpose as described below.

∆p(A,B) =

[
1

n(X)

∑
x∈X

|d(x,A)− d(x,B)|p
]1/p

where d(x,A) = mini(x,Ai) and Ai ∈ A
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Figure 3. Two fire visualizations where the audience implicitly compares model output results to known 
fire behaviour. In the figure on the left, colour represents the length of time it takes for fire to burn a region 

in the picture. In the figure on the right we show burned and unburned areas at a timestep in the model.

Here ∆p is considered up to a fixed constant or cut-off distance c > 0 and where A represents the set of points
on shape A (or B), and x is a point in the set of points X representing the area surrounding A and B up to
the cut-off distance c. Following this, n(x) is the number of points assessed in X . The constant p is a power
that the metric can be raised to. For example, p = 2 yields an equation similar to the standard difference
between points. In a traditional distance context p is modified to manage the influence of skewness or outlying
observations.

Advantages of the ∆ metric over others are that the calculation yields a scalar (statistical shape/Procrustes
methods did not). It is also a proper distance metric (which most area based metrics are not because they
break down when shapes don’t overlap). It is fast to compute as the d(x,A) = mini(x,Ai) and Ai ∈ A are
calculated as part of the narrow-band algorithm used in the Spark solver. Finally, because points in a shape
are referenced to points x ∈ X , there is not requirement that shapes being compared have equal numbers of
points to compare, or that they have a continuous representation. This is useful in the context of missing data
which is common with observed fire fronts.

4.2 Domain specialist appropriate model skill representations

Contrasting our computer appropriate metric, the intent of demonstrating model skill to domain specialists is
to solicit model feedback. Acting on this model feedback will hopefully build confidence in model results so
that it is adopted by practitioners. In this case we are presenting model skill to the fire science community, not
the mathematical modelling community.

For this, the spatio-temporal dimensionality of the data can be leveraged to make model outputs reflective of
what people expect to see when they look at a picture of fire. The platform chosen should be one that allows
for interaction between the audience and the presenting scientist such as through a presentation, or at a formal
poster session. To facilitate feedback in a timely way, visual representations of the data that are familiar to
the audience should be used. Colour selection plays a part, especially when certain colours will be interpreted
as ‘hotter’ than others. Maps or fire perimeter contours would be a traditional way of recording observed fire
information, so our outputs should be relatable to this. Trying to explain how to interpret scalar ∆ metric
results would be less timely and likely less approachable.

In Figure 3 we showed some test images that are similar to ones that resulted in very valuable learnings. In the
figure on the right, we see a fire perimeter that looks like a blob. Our audience was not very convinced that our
model produced results that looked like ‘fire.’ From further conversations based on related images, managing
fire curvature (how rounded or sharp the perimeter can be) resulted in a more acceptable image. In the image
on the left, parameter inputs are varying rather than constant. Particularly in the blue area of the fire a feature
called ‘fingering’ is visible. As mathematical modellers we were unaware that this was a desirable feature to
have captured until an expert was able to relate the image to real fires they had seen. In terms of obtaining
feedback from a scientific development of the model standpoint, this was a very useful conversation.
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5 CONCLUSIONS

Here we demonstrated two different use cases where representations of model skill were desirable. The first
use case required a measure for the shape of a bushfire perimeter relative to an incompletely observed ‘true’
fire perimeter. The second was to communicate model skill of our bushfire model results to a broader audience
in order to solicit feedback regarding perceived strengths and weaknesses of the modelling approach. In one
case we created a scalar metric appropriate to the use goal, but which is difficult to interpret intuitively or in
isolation of related measures. In the other, where we wanted information from experts’ intuitions, we chose a
visual discrepancy approach.

For simplicity it is attractive to imagine a parsimonious approach where a single measure of skill is sufficient to
assess and validate a model, and also can be effectively communicated to diverse audiences. After considering
how to attempt this, our solution was not to advocate for a single measurement to assess model skill; it is to
advocate and trial a single process on how to illustrate model skill for diverse audiences and purposes.

Engaging in such a process to create use specific products requires additional thought and time relative to a
catch-all approach. As a first attempt, refinement is still required to flesh out our process approach. Despite
this, we feel that a process approach like we demonstrated will ultimately yield more desirable outcomes to
situations where measuring model skill and reporting are required.
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