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Abstract: Aggregate data arises in situations where survey research or other means of collecting individual-
level data are either infeasible or inefficient. The recent increasing use of aggregate data in the statistical and 
allied fields – including epidemiology, education and social sciences – has arisen due to number of reasons. 
These include the questionable reliability of estimates when sensitive information is required, the imposition 
of strict confidentiality policies on data by government and other organisational bodies and in some contexts it 
is impossible to collect the information that is needed. In this paper we present a novel approach to quantify 
the statistical significance of the extent of association that exists between two dichotomous variables when 
only the aggregate data is available. This is achieved by examining a newly developed index, called the 
aggregate association index (or the AAI), developed by Beh (2008 and 2010) which enumerates the overall 
extent of association about individuals that may exist at the aggregate level when individual level data is not 
available.  

The applicability of the technique is demonstrated by using leukaemia relapse data of Cave et al. (1998). This 
data is presented in the form of a contingency table that cross-classifies the follow up status of leukaemia 
relapse by whether cancer traces were found (or not) on the basis of polymerase child reaction (PCR) – a 
modern method used to detect cancerous cells in the body assumed superior than conventional for that period, 
microscopic identification.  

Assuming that the joint cell frequencies of this table are not available, and that the only available information 
is contained in the aggregate data, we first quantify the extent of association that exists between both variables 
by calculating the AAI. This index shows that the likelihood of association is high. As the AAI has been 
developed by exploiting Pearson’s chi-squared statistics, the AAI inherently suffers from the well-known large 
sample size effect that can overshadow the true nature of the association shown in the aggregate data of a given 
table.  

However, in this paper we show that the impact of sample size can be isolated by generating a pseudo 
population of 2x2 tables under the given sample size. Therefore, the focus of this paper   is to present an 
approach to help answer the question “is this high AAI value statistically significant or not?” by using aggregate 
data only. The answer to this question lies we believe, in the calculation of the p-value of the nominated index. 
We shall present a new method of numerically quantifying the p-value of the AAI thereby gaining new insights 
into the statistical significance of the association between two dichotomous variables when only aggregate 
level information is available. The pseudo p-value approach suggested in this paper enhances the applicability 
of the AAI and thus can be considered a valuable addition to the literature of aggregate data analysis. 
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1. INTRODUCTION 

Aggregate data analysis often involves the quantification of the association of categorical variables at the 
individual level when only grouped or aggregate level data is available. This issue is of relevance to a variety 
of disciplines that span the social, physical, political and health sciences; see for example, Steel et al. (2004) 
and Salway and Wakefield (2004) and Hudson et al. (2010). While the analysis of aggregate data now spans 
at least 100 years, there has been an explosion of research in this area over the last two decades. As noted 
by Achin and Shively (1995), King (1997) and Salway and Wakefield (2004), the number of scholars 
working on the development of methodologies to analyse this specific data structure is now larger than at 
any time in the history of the statistical and allied disciplines. Recently, researchers from a variety of 
disciplines, such as political science, economics, geography, public health and statistics have had no choice 
but to make inferences using only aggregate information; see King et al. (2004) and Hudson et al. (2005 and 
2010).  

To date the most dominant techniques designed to analyse aggregate data fall within the area of study 
commonly referred to as ecological inference (EI); see King (1997). The techniques that lie within EI aim 
to reconstruct the individual level data (or some function of it) from the aggregate data. Therefore, ecological 
inference may be viewed as a special case of statistical inference wherein the main difficulties surrounding 
EI involve the loss of information about the individual data by the aggregation process. Debate over various 
proposed solutions to EI have appeared in the literature. The general tone of the debate is more critical than 
glowing; see for example, Rivers (1998), Cho and Gaine (2004) and Hudson et al. (2010). It has been 
identified that the success of EI depends heavily upon the lost information and the process of recapturing 
such lost information; see for example Quinn (2004) and Greiner and Quinn (2009). Furthermore, 
Schuessler (1999) and more recently Hudson et al. (2010 pg, 198) questioned the extent to which EI 
techniques are sensitive to assumptions, and they noted that  

“the choice of model is particularly important in EI. Do the assumptions fit the data?” 

Therefore, with the motivation of developing more robust techniques towards lost information, Beh, (2008, 
2010) introduced the novel aggregate association index (AAI). The basic principal of the AAI differs from 
the suite of EI techniques. Instead of reconstructing the individual level data directly (or some function of 
it), which is the primary aim of EI, the AAI quantifies the overall extent of association between two 
dichotomous, categorical variables using only the aggregate data. A major advantage of the AAI over 
traditional EI techniques is that the AAI does not heavily rely on any assumptions about the individual level 
data. Cheema, Beh and Hudson (2013), Beh et al. (2013, 2015) and Beh, Tran and Hudson (2014), have 
explored many different aspects of the AAI. 

This paper is devoted to answering the question “how large should the AAI be to be sure that it is a 
significant measure?” To quantify the statistical significance of the value of the AAI, we calculate the 
probability of observing that AAI (or one that is more extreme) thereby quantifying a pseudo (Monte Carlo 
like) p-value measure. This is obtained by generating a pseudo population of AAI’s under some given 
conditions. The applicability of our technique is demonstrated by analysing the leukaemia relapse data of 
Cave et al. (1998) which presents a cross-classification of polymerase child reaction (PCR) status and follow 
up status of relapse (or otherwise) of cancerous cell in a sample of 178 children. 

This paper is sub-divided into four major parts. The focus of section 2 is to introduce the AAI and the 
notation used throughout the paper. In section 3, we present the methodological rationale of our pseudo p-
value approach to quantify the statistical significance of the extent of association mirrored in the AAI when 
only aggregate data is available. Section 4 introduces the data of Cave et al. (1998) and this data for a for 
demonstration of our novel technique.  

2. THE AGGREGATE ASSOCIATION INDEX (AAI) 

2.1 Notation 

Suppose two variables, A and B, are classified as row and column variables respectively, where the first 
row category is assigned the generic label A1 and the second row category is given the generic label A2. 
Similarly, the first and second column categories are B1 and B2, respectively.  
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Table 1. A general 2x2 contingency table 
A|B B1 B2 Total 

A1 n11 n12 n1. 

A2 n21 n22 n2. 

Total n.1 n.2 n 

Table 1 presents the general form of a 2x2 contingency table, where n is the total number of objects or 
individuals in the study. Let n୧୨ denote the number in the sample that is classified into the (i, j)th cell with 
the proportion of the sample allocated into this cell denoted as p୧୨ = n୧୨ n⁄ , for i = 1, 2 and j = 1, 2 such 
that ∑ ∑ p୧୨ = 1ଶ୨ୀଵଶ୧ୀଵ . Thus, nଵଵ denotes the number of objects/individuals that have been classified in the 
first row and the first column category and pଵଵ is the proportion of those objects/individuals in the sample 
that have been classified into this cell. The frequency of the	i′th row margin and j′th column margin is 
denoted by n୧. = ∑ n୧୨ଶ୨ୀଵ  and n.୨ = ∑ n୧୨ଶ୧ୀଵ  respectively, such that, ∑ n୧. = ∑ n.୨ = nଶ୨ୀଵଶ୧ୀଵ . Define p୧. =n୧. n⁄  and p.୨ = n.୨ n⁄  to be the i′th row and j′th column marginal proportion respectively, such that ∑ p୧. = ∑ p.୨ = 1ଶ୨ୀଵଶ୧ୀଵ . Suppose we now consider Pଵ = nଵଵ nଵ.⁄ , which is the conditional probability of an 
individual/unit being classified into “Column 1” given that it has been classified into “Row 1”. 

When the individual level information (or joint cell values) of a 2x2 contingency table are unknown, Duncan 
and Davis (1953) provided lower and upper bounds for the (1, 1)’th cell frequency as, Aଵ = max(0, n.ଵ − nଶ.) ≤ nଵଵ ≤ min(n.ଵ, nଵ.) = Bଵ.                                                              (1) 

It is easy to verify that the bounds of equation (1) can be written in terms of Pଵ such that Lଵ = max ቀ0, ୬.భି୬మ.୬భ. ቁ ≤ Pଵ ≤ min ቀ୬.భ୬భ. , 1ቁ = Uଵ.                               (2) 

Beh (2008) showed that when only the marginal information is available, and a test of the association 
between the two dichotomous variables is performed at the α level of significance, the bounds of P1 can be 
narrowed to  L = p.ଵ − pଶ.ටಉమ୬ ቀ୮.భ୮.మ୮భ.୮మ.ቁ < Pଵ < p.ଵ + pଶ.ටಉమ୬ ቀ୮.భ୮.మ୮భ.୮మ.ቁ = U,               (3) 

where, χଶ is the 100(1 − α)′th percentile of the chi-squared distribution with 1 degree of freedom. 
Furthermore, Pearson’s chi-squared statistics for a 2x2 contingency table (Table 1) is simplified in terms of 
individual cell frequencies and marginal totals such as Xଶ = n (୬భభ୬మమି୬భమ୬మభ)మ୬భ.୬మ.୬.భ୬.మ .                    (4) 

2.2 The Aggregate Association Index 

Beh (2008, 2010) transformed Pearson’s chi-squared statistic, as given by equation (4) so that it can be 
expressed as a function of Pଵ and the marginal data. Equation (4) can alternatively, but equivalently, 
expressed as Xଶ(Pଵ|pଵ., p.ଵ) = n ቀభି୮.భ୮మ. ቁଶ ቀ୮భ.୮మ.୮.భ୮.మቁ.                   (5) 

Note that the chi-squared statistic given by equation (5) depends, not only on the aggregate data and the 
sample size, but it also on the magnitude of the conditional proportion Pଵ. In turn, Pଵ is bounded by equation 
(2), which is   further narrowed to be within the bounds of equation (3) when a test of association is 
conducted using an α level of significance. Thus, using the expression of the chi-squared statistic given by 
equation (5), we are able to quantify the values of the statistic over the permissible range of the Pଵ. Like 
traditional inferential theory, by using the ranges in  (2) and (3) and the statistic given by equation (5), we 
can now quantify the extent of the deviation of P1 from its value under the hypothesis of independence, p.ଵ. 
This development enables the analyst to quantify all possible values of the chi-squared statistic for any and 
all P1 values that fall within this interval. Therefore, given only aggregate data, the quadratic function given 
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by equation (5) can be visualised to yield a unique AAI curve over the permissible range of the P1, which is 
depicted in Figure 1. 

 

 
Figure 1. A general graphical display of the AAI 

For the usual Pearson’s chi-squared test of independence between two dichotomous variables, we reject the 
null hypothesis of independence at the α level of significance when the observed value of the statistic, Xଶ(Pଵ|pଵ., p.ଵ), exceeds the critical value of χଶ with one degree of freedom. Thus the region that reflects 
the strength of a statistically significant association between the variables is the area above the critical line 
defined by χଶ but which lies under the AAI curve – see the shaded region in Figure 1. Quantifying this 
strength can be undertaken by calculating the proportion of the total area under the AAI curve, defined by 
equation (5), shown as shaded. Mathematically, the area of this shaded region, quantifying the extent of 
association between two dichotomous variables using the AAI, can be calculated as, A(Pଵ) = 100ቆ1 − ሾ(ಉିభ)ା(భିಉ)ሿಉమା ଡ଼మ(భಉైಉ |୮భ.,୮.భ)ୢభ ଡ଼మ(భభైభ |୮భ.,୮.భ)ୢభ ቇ.                (6) 

By evaluating the definite integrals in equation (6), Beh (2010) provided the following simplified form of 
the AAI for a direct calculation of its magnitude: A(Pଵ) = 100 ቂ1 − ಉమሾ(ಉିభ)ା(భିಉ)ሿ୩୬ሾ(భି୮.భ)యି(భି୮.భ)యሿ − (ಉି୮.భ)యି(ಉି୮.భ)య(భି୮.భ)యି(భି୮.భ)య ቃ.             (7) 

In equation (7), k = ଵଷ୮మ.మ ቀ୮భ.୮మ.୮.భ୮.మቁ. The AAI is bounded by 0 ≤ A(Pଵ) ≤ 100. For a given level of 

significance, α, the AAI quantifies how likely a particular set of fixed marginal frequencies will enable the 
researcher to conclude that there exists a statistically significant association between two dichotomous 
variables. An AAI of A ≈ 0 indicates that the existence of a statistically significant association (at the α 
level of significance) is not at all likely. However, an AAI of A ≈ 100 suggests that it is highly likely that 
there is a statistically significant association. 

3. METHODOLOGY 

A well-known characteristic of the AAI, as based on the Pearson’s chi-squared statistic, is that its magnitude 
increases as the sample size increases. This is due to Pearson’s chi-squared statistic being linearly related to 
the sample size; see equation (5). Everitt (1977, pg. 56) formally discusses the relationship between the chi-
squared statistic and sample size, n. Therefore, the true nature of the association between two variables can 
be masked by the magnitude or effect of sample size; see Beh, et al. (2013, 2015). However, it may be that, 
for a given n, a large observed AAI is actually relatively small when compared with other values that the 
AAI can take for that given sample size. Our aim is therefore to quantify the significance of the AAI 
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magnitude while isolating the impact of sample size. This will allow us to obtain a clearer indication of the 
true extent of the association by controlling for the impact of the sample size and will better highlight the 
underlying structure of the association. To achieve this objective we propose a pseudo p-value approach by 
adopting the following strategy: 

• The first step involves treating the sample size of Table 1 as fixed. 

• For the fixed (and observed) sample size, n, we generate all possible row and column marginal totals 
by imposing the restriction that no marginal frequency is less than 1. By doing this we can generate a 
population of 2x2 tables for the specified sample size. Therefore, the maximum number of the 
contingency tables that can be studied for a given sample of size n is (n − 1)ଶ. 

• For each member of the population of (n − 1)ଶ tables, we calculate the AAI so as to obtain a 
population of all possible AAI quantities for the observed sample size. Furthermore, when the impact 
of the sample size is constant for all AAI values, any difference in the magnitude of the AAI will be 
due to the distribution of the row and column marginal frequencies.   

• As the observed 2x2 contingency table  is a realization of one possible table from the population of the 
all possible tables, we can therefore  identify the proportion of 2x2 tables that have the same, or higher, 
AAI than  the observed. Such a proportion, defined as the p-value of the AAI, can be quantified by  P(AAI ≥ AAI୭ୠୱ|n)                  (8) 

   where AAI୭ୠୱ is the observed AAI of the 2x2 table being analysed. 

4. APPLICATION 

4.1 The Data 

In the United States of America, 3000 to 4000 people are diagnosed with acute lymphoblastic leukaemia 
every year and two thirds of them are children. The standard criterion for assessing whether a child with 
leukaemia is in remission is when a doctor cannot detect any cancerous cells in the child’s bone marrow 
through a microscope; see Cave et al. (1998) and Simonoff (2003, pg. 199). However a more sophisticated 
technique, polymerase child reaction (PCR) can detect as few as 5 cancer cells in every 100,000 cells, which 
is a significantly smaller amount than detectable by microscope. To verify the effectiveness of the new PCR 
technique, Cave et al. (1998) conducted a study examining 178 children who appeared to be in remission 
using the standard criterion. They found that 75 out of 178 patients were detected with traces of cancer and 
in a three year follow up, 30 out of 75 suffered a relapse. Of those children who did not appear with traces 
of cancer (103 children), 8 suffered a relapse. The 2x2 contingency table that summarises the findings of 
the leukaemia relapse study undertaken by Cave et al. (1998) is given by Table 2 and cross-classifies PCR 
status by follow up status for the sample of 178 patients. 

Table 2. Cave et al. (1998) Leukaemia relapse data 
Follow up status 

PCR status Relapse No relapse Total 

Cancer traces 30 45 75 

Cancer free 8 95 103 

Total 38 140 178 

4.2 Demonstration of the pseudo p-value Approach  

In this section we investigate our method of calculating the probability of observing a specific value of the 
AAI, given by equation (8), for the observed sample size of the 2x2 contingency table (Table 2).  

First we analyse the leukaemia data of Table 2 by assuming the case where the joint cell frequencies are 
known. The observed proportion, pଵଵ, of children who were identified by PCR with traces of cancer and 
also suffered a relapse after three years is 30/178	 = 	0.169. For this cell, the expected proportion, pଵ.p.ଵ, 
if the hypothesis that PCR was not helpful in detecting traces of cancer is 0.090. The value of the Pearson’s 
chi-squared test statistic, given by equation (4), is Xଶ = 26.85. Furthermore, with 1 degree of freedom, the 
p-value of this statistic is less than 0.0001, showing that the there is a significant association between PCR 
status and a child’s leukaemia status three years after treatment. Such conclusions were also made by Cave 
et al. (1998) and Simonoff (2003) in their analysis of the data. 
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Let us now consider the scenario where the cell frequencies of the Table 2 are unknown and we have   only 
the marginal totals as available information. Note that with the absence of individual level data the joint cell 
proportion pଵଵ and conditional proportion Pଵ are inestimable, as are the usual measures of association. 
However, by using the equation (2) we can determine the lower and upper bounds of Pଵ for the leukaemia 
relapse data; using only the marginal totals the bounds of Pଵ are (Lଵ = 0, Uଵ = 0.507). Similarly, to perform 
a test of independence at the  0.05 level of significance the bounds are calculated by equation (3); which 
gives bounds (L.ହ = 0.143, U.ହ = 0.284). Therefore, independence between the dichotomous variables 
of Table 2 can be concluded if 0. 143 ≤ Pଵ ≤ 0.284. On the other hand, the row and column variables are 
statistically significantly associated at the 5% level of significance if 0 ≤ Pଵ ≤ 0.143 or 0. 284 ≤ Pଵ ≤0.507. The extent of association between PCR status and follow up status is then quantified by the AAI 
using equation (7) at the 5% level of significance. Doing so gives A.ହ = 82.36. Due to the high value of 
the AAI, it appears likely that a strong association exists between PCR status and follow up status at the  0.05 level of significance (when only the aggregate data is being analysed). By applying our approach, we 
argue that the high extent of association between both variables is not due to the sample size, but due to the 
underlying association structure of the two variables. Since the total number of children included in the 
study is n = 178, there will be a population of 177ଶ = 31,329 contingency tables of size 2x2 that can be  
generated for this sample size. Hence, we obtain a population of 31,329 AAI values. Recall that, when 
testing the association between the dichotomous variables of the Table 2 at the 5% level of significance,  the 
observed AAI is A.ହ = 82.360 and this is only one of the possible 31,329 AAI values within this 
population. Figure 2 gives a histogram of all possible AAI values for n = 178. 

 
Figure 2. Histogram of the magnitudes of the all possible AAIs for Cave et al. (1998) leukaemia relapse 

data given the observed sample size, n = 178 

The probability of observing an AAI (or one that is more extreme) than A.ହ = 82.360 is 0.0407 as 
calculated by equation (8). That is, there are about 4 chances out of 100 that an AAI as big (or bigger) than 
that observed will be obtained for the given table of size 178 with marginal configuration as in Table 2. This 
suggests that the aggregate data of Table 2 is not only informative in terms of exploring the underlying 
association structure between the studied two dichotomous variables, but that the observed AAI of Table 2, 
is also extremely large in comparison to all possible AAI’s that may be obtained for its sample size. 

5. DISCUSSION 

This paper presents a new approach to quantify the significance of the extent of association in aggregates of 
2x2 contingency tables calculated by using the AAI (2008 and 2010). Due to the underlying properties of 
the AAI, the sample size effect can overshadow the true nature of association displayed in the aggregate 
data of a table. However, we show that the impact of sample size can be isolated by generating a pseudo 
population of 2x2 tables under the given sample size. This provides an opportunity for analysts to quantify 
the likelihood of the value of the AAI for a given marginal configuration for a specific sample size. The 
pseudo p-value approach suggested in this paper enhances the applicability of the AAI and thus can be 
considered a valuable addition to the literature of aggregate data analysis. More research is also needed to 
further explore the mathematical properties when a specific hypothesis needs to be tested at a given 
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significance level. Future work will also extend our technique for stratified 2x2 tables in addition to tables 
of higher dimensions. 
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