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Abstract: Reverse logistics’ research has focused on how to improve current operations to recover some value
from supply chains that distribute and sell products that end up with a customer. For high-value, low-volume
supply chains, particularly those operating on a contract-loan basis such as specialized medical goods, reverse
logistics has a different value proposition. As with most unidirectional supply chains, these have developed
over time out of necessity and without a plan or design to operate efficiently. As health care has become
widespread and universal, they have grown organically into systems that are far from optimal.

In contrast to traditional supply chains, chains working on loan contracts are inherently closed, as products
must be returned for re-fitting and conditioning before the next loan, and thus any inefficiencies in reverse
logistics will directly impact the business. Moreover, at the consumer end of the health care sector (that is,
the hospitals), efficiency for the supplier is not necessarily seen as a priority. In this paper, we investigate
two important logistic questions that distributors of goods for the health industry face today. First, what are
the efficiency gains if the medical good distributor assumes the lead role in centralising some operations (e.g.,
in sterilisation policies) which are currently distributed and owned by health staff? Second, can new sensors
and the Internet of Things (IoT) assist reverse logistics of medical material in improving services, lead times
and bottom lines of hospitals and distributors, without impacting patient care? We introduce an optimisation
model to calculate an optimal distribution schedule to address these questions.

Keywords: Inventory management, health care, logistics for the health industry, optimisation, mixed-integer
linear programming
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1. INTRODUCTION

According to health care industry surveys [Motorola Inc., 2010], the costs of managing the supply chain are
second only to the costs of labour. This source indicates that supply chain management consumes between one
third and two thirds of the annual operating costs for health care providers, distributors, group purchase organ-
isations and manufacturers; inventory management and order management alone represent approximately half
of those costs. Despite the importance of health care logistics, the industry remains mired in outdated busi-
ness practices and processes, lack of standards, poor collaboration among suppliers, distributors and hospital
and clinic managers, while at the same time it faces growing economic pressure from stakeholders, increas-
ing demands from an aging population, and unplanned complexity produced by building upon existing and
inefficient legacy operations.

Awareness of these problems is widespread, and a number of overviews exist that summarise the most pressing
issues. Rossetti et al. [2008] identifies opportunities for applications of inventory management to the health
care value chain, with emphasis in demand forecasting, just-in-time and multi-objective optimisation. The
overview given in Chandra and Kachhal [2004] indicates that the most common problems include the con-
figuration of distribution networks, inventory control, supply contracts, distribution strategies, supply chain
integration and strategic partnering, outsourcing and procurement strategies, information technology and de-
cision support systems, and customer value. Many of these logistic challenges stem from the health industry’s
fragmented supplier base, legacy inefficiencies, increasing cost of materials, and decreasing resources and
subsidies.

In this paper, we focus on the challenge of reverse logistics for distribution networks of high value-added
medical products. Reverse logistics is the process of planning and controlling the efficient and cost-effective
flow of materials, in-process inventory and finished goods from the point of consumption to the point of origin
for the purpose of recapturing value or proper disposal [Govindan et al., 2015]. We will use as an example
the consignment and loan of orthopaedic kits, but the following reasoning applies just as well to equipment
used in other medical specialties. A major supplier of orthopaedic products would handle tens of thousands
of stock-keeping units (SKUs or kits), distribute them to hundreds of hospitals and hold hundreds of millions
of dollars in inventory. The kit contains trays of instruments, which are re-usable, and implants, which are
consumable. These products are not sterilised, but the trays do include articles that are sterilised; trays are
designed to facilitate sterilisation. Many consumables have expiry dates, thus requiring stock rotation. New
products are often released, making it necessary to plan for the retirement of kits. In addition to this, many
of the re-usable components need to return to the distributor for fitting and re-conditioning, and the longer the
period of time the hospitals hold to these instruments after use, the more of an inconvenience it is to all the
involved parties, as the kit is not available for re-distribution to another hospital. Unfortunately, at present it is
not possible to track the location of individual kits with accuracy. These features make it clear that the supply
chain does not end once the kit is delivered to a customer, but a reverse logistics operation is crucial.

Not many projects deal with reverse logistics in the health industry. Some examples include Li-Hong [2009],
who focuses on the problem of recovering medical waste, which has important public health and environ-
mental implications. The reverse logistics model proposed calculates the optimal locations of collection and
processing centres. The model proposed finds the optimal location of collection and processing centres. Simi-
lar models to the one we propose here, although not related to the health industry, include Krikke et al. [1999],
who optimise the design of a reverse logistic network for a photocopier manufacturer. Like the orthopaedic
kits, photocopiers are complex items with some valuable parts used in re-manufacturing, some others for refur-
bishment and some others to disposal. Li [2013] proposes a probability-based triple bottom line framework for
assessing reverse supply chains that takes into consideration costs, product quality and environmental harm.

In the present paper, we introduce a reverse logistics model with the objectives of, first, increasing the logistic
efficiency of the medical kits’ distribution network, and second, to make the best possible use of the kits
by minimising the idle time the equipment spends in the hospitals after use. We argue that the proposed
model could be used in conjunction with improvements in day-to-day operations such as real-time automated
data capture to keep track of the medical kits within the system, and that the model could assist in assessing
existing and proposed standards in the current supply chain configuration. For example, by defining policies
for sterilisation at the companies’ warehouses rather than having kits sterilised at hospitals as well, could lead
to important potential savings.
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Figure 1: The reverse health logistics supply chain and the relationship among model components

2. THE MEDICAL KIT SUPPLY CHAIN

The schematic in Figure 1a highlights the main operations and will form the basis of our model. After prepara-
tion, the kits flow from warehouse storage to hospital storage, where it remains for a variable amount of time.
Once the kits are used in medical operations, they are then reassembled, sterilised and prepared for storage
before being sent back to the company’s warehouse. The standard hospital procedure is to sterilise the kits
prior to operation; however, only one sterilisation step is rationally required in the supply chain model. Due
to a lack of agreed standards across the industry, hospitals are apprehensive of whether the sterilisation at the
company’s warehouse meets their own standards. For our model, we shall assume that such a standard exists
and only one sterilisation happens at the company’s warehouse.

Some aspects of the system, such as the inclusion of manufacturer and end disposal, were left out for simplicity
reasons. These assumptions tend to hold true in short, operational time frames, but in the long run, strategic
analysis would also need to consider these components of the supply chain. The linear model we present
optimises network flows and inventories simultaneously. The decision variables represent the schedule of
deliveries from warehouses to hospitals and the return of materials in the opposite direction. The model will
let us address vital questions such as what is the best schedule with known demand? Where should certain
operations (such as warehousing) be done to minimise cost? and What should be the baseline inventory
stock level? In the following section, we present a linear program (LP) for optimising scheduling in order to
minimise operational costs. The solution prescribes the transportation path and quantity that will minimise the
aforementioned costs for the company and the consumers.

3. THE MATHEMATICAL MODEL

In what follows, L refers to the set all warehouse and hospital locations, K to the set of all kit types, G to the
set of possible ’ages’ (shifts held at hospital) of the kits, and T to the set of all time shifts considered. The time
horizon of the optimisation consists of 60 shifts. Our decision variables are xijgkt, the flow of kits of type k
between i and j which have been held for g shifts at shift t; pikt is the inventory size at location i for kit type
k and at the time shift t; qigkt represents the inventory size of kits of age g; and skit is the total unsatisfied
demand of kit type k at hospital i in shift t.

We modelled the variability of the time the hospitals hold the kits using a Markov Chain (MC) by representing
the probabilities of a kit passing to different stages of the supply chain (explained below). The solution
prescribes the transportation path and quantity that will minimise the aforementioned costs for the company
and the consumers. Figure 1b illustrates how the MC model’s results are used as parameters in the LP model.
The aim of the problem is to minimise the sum of transportation, inventory holding, kit setup, timing penalty
and unsatisfied demand costs:

min
∑

(ij)∈L

TCij
∑
g∈G

∑
k∈K

∑
t∈T

xijgkt +
∑
k∈K

∑
i∈L

QCik
∑
t∈T

pikt +
∑
i∈W

∑
k∈K

SCik
∑
j∈H

∑
t∈T

xji,0,kt+

∑
k∈K

PCk
∑

g>τ(g)−ρ

∑
i∈H

∑
t∈T

qigkt +
∑
k∈K

DCk
∑
i∈H

∑
t∈T

skit , (1)

1719



B. Guo, et al., Optimal Inventory Management for the Healthcare Industry

where TCij is the transportation cost between location (i, j) ∈ J per kit, QCik is the inventory holding cost
between for kit k ∈ K at location i ∈ L, SCik is the setup cost for kit k ∈ K at warehouse i ∈ W , PCk is
the penalty cost for not timely returning kit k ∈ K to a warehouse and DCk is the unsatisfied demand cost
for a kit k ∈ K; τ and ρ represent the estimated periods on hold and the time in which the kit is used and
are estimated beforehand using a normal distribution, although they could be expressed as a function of g. We
next outline the most important constraints.

Variable pikt is defined as

pikt =
∑
g∈G

qigkt ∀i ∈ L, ∀k ∈ K, ∀t ∈ T (2)

where G represents the time that a kit has remained in a hospital.

For cases where the kits arrive to or depart from hospitals, we have∑
j∈W

xjigkt −
∑
j∈W

xijgkt = qigkt − qi,g−1,k,t−1 ∀i ∈ H, ∀g ∈ G \ {0}, ∀k ∈ K, ∀t ∈ T \ {0} (3)

which says that the number of kits that enters a hospital is equal to the amount of kits that accumulates in the
inventory during that period. Additionally, the age g of the kits located in hospitals are incremented at each
time shift. The indexes associated with constraint (3) specify that medical kits are only delivered to hospitals
from warehouses, W , and are sent back to warehouses, W , once their use is ceased. There is an analogous
constraint to model flows to and from the warehouses, not shown due to space limitations.

Once the kits are sent back to the warehouses, they must undergo maintenance checks before being repackaged.
It is assumed that such a process must take at least one time shift. Constraint∑

j∈L
xij,0,kt ≤ qi,0,k,t−1 ∀i ∈W, ∀g ∈ G, ∀k ∈ K, ∀t ∈ T \ {0}. (4)

states that only kits currently present in the warehouse’s inventory can be sent to other locations. The model
also states that return kits cannot be immediately sent to a new location, but must remain at the warehouse for
at least one shift.

Kits sent to the hospitals together must return together. Constraints∑
j∈W xji,0,kt =

∑
j∈W xij,τ,k,t+τ ∀i ∈ H, ∀k ∈ K, ∀t ∈ T , (5)

qi,0,kt = qigk,t+g ∀i ∈ H, ∀g ∈ G \ {g ≥ τ}, ∀k ∈ K, ∀t ∈ T , (6)

state that all kits of type k that arrive at a hospital at a time, leave the hospital together τ periods later.
Constraint (6) is an almost equivalent to constraint (5) but makes the explicit statement that no further flow
of that order can occur while the hospital has the packages in their possession. Constraint (5) explicitly states
that the kits travel together. The assumption behind these constraints is that, if the hospital has not returned
the kits they currently hold, then they will not require more orders of the same type of kit.

We express the relation between transported kits and the hospitals’ demand as

Djkt =
∑
i∈W

xij,0,kt + sjkt − ejkt ∀k ∈ K, ∀j ∈ H, ∀t ∈ T , (7)

which says that for warehouses, the amount sent to the hospitals is always equal to the demand minus the
unsatisfied demand (sjkt) plus the excess deliveries (ejkt). Unsatisfied demand is assumed to occur due to
either a lack of inventory or a decision that proves to be more optimal. Excess deliveries are included to
represent the contrary case where the total expenditure of the system can be minimised by sending kits ahead
of time. Excess deliveries will also prove vital in the periodic constraints discuss further in this section.

The conservation constraints state that the number of kits of type k in the system, Nk, remains constant. This
assumes that no kit is lost or broken, which is not true as in reality this happens from time to time. The
constraint can be expressed as∑

i∈L
pikt = Nk ∀t ∈ T, ∀k ∈ K . (8)
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Figure 2: Locations of Canberra’s hospitals (white) and warehouses (red)

To establish a cyclic pattern for inventories we set the requirement that inventory and flow are equal at the start
and end of the month.

xijgkt0 = xijgk,t0+|T | ∀i ∈ L, ∀j ∈ L, ∀g ∈ G, ∀k ∈ K , (9)
qigkt0 = qigk,t0+|T | ∀i ∈ L, ∀g ∈ G, ∀k ∈ K , (10)

where t0 and T enable the calculation of a periodic solution. To obtain the value of τ and ρ in the steady
state, the Markov Chain (MC) model is constructed using the probabilities in Figure 3 to find the long-term
and stochastic behaviour of parameter τ , the number of time shifts spent by a medical kit in a hospital during
its stay.

4. RESULTS AND DISCUSSION

Canberra (Figure 2) was the city chosen for the case study. Hospital locations are actual, warehouse locations
are hypothetical and were selected randomly. The city features 20 main hospitals with different specialties
ranging from dental to surgical. The warehouse locations selected arbitrarily are 25 Moore St and 34 Lynch St.
The distances between every pair of warehouses and hospitals were calculated using the shortest possible road
route to form 231 distance combinations in total. These distances where used to calculate the transportation
cost using the relationship: distance ∝ transportation cost where the factor was defined according to the
type of medical kit being delivered.

In summary, the inputs to the optimisation model are parameters τ and ρ, which are obtained in the pre-
processing stage from a MC model, the demand in time by each hospital, the locations of hospitals and ware-
houses, and general costs such as transportation, kit setup, penalties, unsatisfied demand and inventory holding
costs. The output is represented by the inventory, flow and unsatisfied demand decision variables.

All calculations were made using a shared remote desktop running CPLEX 12.5.0.1 in a 64-bit Intel Xeon
CPU at 2.80 GHz (2 processors) and 64GB of RAM. The program was solved in parallel mode using up to 23
threads for concurrent optimization. The resulting LP has 2024 constraints and 8258 variables. The total time
required to solve the model was 0.5 s with the optimal scheduling resulting in a total cost of $754 and $1299
for the low and high demand scenarios, respectively. For all the results, N = 10 for a single type of kit in the
system.
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Figure 3: State diagram for the medical kit’s location

(a) The steady-state solution for low demand (b) The steady-state solution for high demand

Figure 4: Steady state inventories

We tested two scenarios, low and high demand, for which the inventory results are shown in Figures 4a and
4b, respectively. These figures represent variations of variable qigkt respect to time. The low demand model
was solved using a pre-defined demand schedule (not shown due to space limitations) with a quantity of one
medical kit per order. The high demand model was assuming five medical kits per order.

Comparing figures 4a to 4b we see different behaviours of the warehouses inventories. For the low demand
situation, the inventories of the warehouses remain stable with little fluctuations from its initial condition.
Intuitively, we would expect inventories to remain relatively constant as the low demand introduces few per-
turbations into the system. In contrast, we see that the high demand case yields a more variable inventory
level. This result can be interpreted as the demand outstripping supply and thus cannot remain in a equilibrium
state similar to the other case. Comparing the costs that form the objective function, we found (Figure 5) that
transport, set up, timing and unmet demand costs increased under higher demand. This is a results which can
be understood intuitively, as a higher demand will lead to more medical kits being delivered and hence the
transportation costs can be expected to increase. Greater demand also implies that some of the demand will
be unsatisfied, especially if demand outstrips supply, and thus, greater penalties will have to p be paid. Setup
and timing costs are also expected to increase due to the cumulative costs associated with greater flow in the
closed-loop supply chain.

5. CONCLUDING REMARKS

Reducing the cost in the health care industry is an economically attractive proposition. In this paper, we have
formulated a mathematical model that determines the optimal baseline inventories and decisions. We have
demonstrated the feasibility of our approach on a hypothetical case study based on a set of 20 hospitals in
Canberra and two hypothetical warehouses of a company that supplies medical kits.

Our results for the case study show that the high demand scenario yields a more variable inventory level than
the low demand case. Comparing the costs that form the objective function, we also found that transport, set
up, timing and unmet demand costs increased under higher demand, as expected. Inventory management costs
are almost the same for both cases, but transport and the costs of unmet demand are much greater for the high
demand scenario.
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Figure 5: The relative proportions of each type of cost

The usefulness of the model we presented can be justified on the grounds of the following two problems. First,
it can be used in conjunction with real-time automated data capture, obtained by installing sensors to keep
track of the medical kits within the system. These sensors would add certainty to the time parameters we dealt
with using Markov Chains. Second, the model could be used to assess the benefits of existing and proposed
standards in the current supply chain configuration. For example, important savings could be achieved by
defining clear policies and supply chain-wide standards for kit sterilisation and preparation and applying them
at the companies’ warehouses rather than having kits unnecessarily sterilised at hospitals for a second time.
This would avoid effort duplication and save scarce and valuable resources.
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