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Abstract: Australian hospitals are facing the challenge of increased demand in ED and inpatient services.
Congestion and poor quality of care for some patients may occur as a consequence of such challenging sit-
uations. Modelling patient flow is a way to capture a small number of salient characteristics of a hospital
operation permitting us to investigate the causes and effects of congestion, and identify optimal improvement
policies.

The data used in this project are drawn from an extensive Patient Journey Database of a major South Aus-
tralia hospital, Flinders Medical Centre (FMC). This database tracks journeys of patients through the hospital
system, from arrival to discharge. This allows for very detailed analysis and modelling of these journeys.

Analysis of historial bed occupancy data indicates that there are remarkably regular patterns in patient occu-
pancy, on both daily and weekly time scales. Based on this observation, we develop a Markov decision process
(MDP) model over a weekly time horizon to analyse FMC’s bed occupancy patterns with a goal of proposing
policies that lead to reduced incidence of congestion.

A simple, four state, approach is used in categorising the occupancy level, and daily and weekly probability
transition matrices are derived from midnight census data over a three year period. We then introduce a reward
function that attempts to balance the benefit of maintaining sufficient buffer in the occupancy of wards versus
the cost of diverting patients elsewhere. An optimal policy from the MDP model was found using the dynamic
programming approach.

Employing an MDP approach in these problems will also, potentially, allow hospital staff the ability to forecast
possible onset of very high occupancy levels, based on the hospital’s current situation. Such a “warning
signal” may enable hospital managers to be proactive in their strategies to reduce the magnitude and impacts
of congestion episodes. Although, to managers, the underlying mathematics may appear relatively complex,
it is possible to embed an MDP model inside a software package so that the model is available in a more
user-friendly form, allowing it to be easily run on-the-fly so that staff can react to changes in the hospital in
real time.

The issue of validation of “optimal” policies suggested by an MDP model is addressed in three, separate,
ways. Firstly, the steady state probabilities resulting from such policies are examined to see if they reduce the
long-run frequency of highest occupancy levels. Secondly, consultation with FMC experts, an integral part of
this study, has provided a degree of qualitative validation. Thirdly, synthetic data generated by a discrete event
simulation system developed in another component of the larger project is used to provide surrogate statistical
testing environment for the performance of MDP’s policies. Simulated experiments also serve the purpose of
convincing hospital’s management before piloting policies in real setting.

Future work includes refinement of both the MDP and the simulation model and establishment of a formal
framework for cross-validating MDP and simulation modelling results.
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1 INTRODUCTION

Australia’s growing ageing population and a rise in chronic diseases are causing an increased demand for
emergency and inpatient services in the country’s hospitals FitzGerald et al. (2012). Currently, many hospitals
are often operating at or close to full capacity. Coupled with the stochastic nature of bed availability, patient
arrivals and the duration of treatments and care, episodes of congestion often occur, which lead to wide-ranging
effects such as decreased quality of care and fatigued staff, among others.

However, despite uncertainties, it has been discovered through analysis of historial data that there are remark-
ably regular patterns in patient occupancy, on both day-to-day and week-to-week time scales. These patterns
can suitably be modelled mathematically as Markov processes.

Markov processes and their extensions have been used in many applications in the health care setting including
admission control Helm et al. (2011), resource availability Garg et al. (2012), inventory management Broyles
et al. (2010) and bed occupancy Christodoulou and Taylor (2001).

In this study, we develop a Markov decision process (MDP) model over a weekly time horizon. We use a given
hospital’s occupancy data to construct probability transitions consistent with these data. Also, we introduce a
reward function that attempts to balance the benefit of maintaining adequate (but small) buffer in the occupancy
of wards versus the cost of diverting patients elsewhere. The weekly time scale is chosen due to the natural
operation cycle of most hospitals.

2 THE MDP MODEL

The MDP model was formulated using midnight occupancy data provided from the Flinders Medical Centre
(FMC), a metropolitan hospital in the southern Adelaide area. The data were extracted from FMC’s Patient
Journey Database, for the periods of January 2009 to June to 2013. Only patients within the General Medical
and Surgical streams were considered. These represent approximately 65% of inpatient bed allocations at the
hospital. According to expert advice, these streams of patients constitute the main source of variability in
occupancy levels at FMC. Further, the period between December the 25th and 31st (inclusive) was omitted
from the analysis due to the Hospital’s policy of minimising bed occupancy over this period.

2.1 Daily Probability Transition Matrices

After discussions with FMC staff a simple, four state, model was designed. It was felt that these four states,
while coarse, achieved adequate balance between interpretability and parametric complexity on the one hand,
and the degree of detail on the other hand. Too many states are difficult to interpret for health care professionals
(and require estimates of too many parameters), whereas too few make the model too coarse. Based on
consultation with FMC staff, the four occupancy states were defined on the basis of deviations from the mean
occupancy. The boundaries between the four states are given below.

Definition 1. The states {1, 2, 3, 4} will correspond intuitively to Low, Medium, High and Very High occu-
pancies as indicated below:

Low(S = 1) : s ≤ µ− σ
2 [0, 279)

Medium(S = 2) : µ− σ
2 < s ≤ µ+ 3σ

4 [279, 307)
High(S = 3) : µ+ 3σ

4 < s ≤ µ+ 3σ
2 [307, 322)

Very High(S = 4) : s > µ+ 3σ
2 [322,∞)

,

where the aggregated states denoted by S actually correspond to collections of micro-states denoted by s that
are the daily occupancy levels. The parameters, µ and σ denote the overall mean and standard deviation of
occupancy levels in the calibration portion of the data set used. Also shown above are the occupancy intervals
for the respective aggregated states calculated from the historical data.

Each day within the data is classified as Low, Medium, High or Very High occupancy using Definition 1, and
the transition from weekday to weekday (Pi, i = 0, · · · , 6) is classified as one of the 16 state-to-state pairs,
e.g., Low-Low, Medium-High, etc. An example of the resulting, estimated, daily probability transitions matrix
for Monday to Tuesday P0 is provided below

P0 =


0.8205 0.1795 0 0
0.1538 0.7949 0.0513 0

0 0.4694 0.4286 0.102
0 0.04 0.64 0.32

 . (1)
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It can be seen from P0 that the first two diagonal entries are dominant. Thus the probability of remaining in
a Low or Medium state on Tuesday when the system was in such a state on Monday is clearly the highest.
However, for High and Very High states, there are substantial probabilities of either moving to or remaining
in the Very High state. Other interesting patterns can be detected in the remaining six transition matrices, but
are not presented here due to page limitations.

2.2 Weekly Probability Transition Matrices

The weekly probability transition matrices Qi, i = 1, · · · 6 are given by products of the daily probability
transition matrices, namely

Q0 = P0P1 . . . P5P6; Q1 = P1P2 . . . P6P0; . . . Q6 = P6P0 . . . P4P5, (2)

whereQ0 contains weekly probability transitions from a Monday to the following Monday,Q1 contains similar
transitions from a Tuesday to the following Tuesday, and so on. It has been verified, empirically, that these
matrices approximately satisfy the time homogeneity property, thus defining seven homogeneous Markov
chains. MatrixQ0, calculated from the product of daily probability transition matrices for Monday-to-Monday,
is given here as an example:

Q0 =


0.2028 0.5485 0.1826 0.066
0.178 0.5246 0.2041 0.0933
0.1491 0.4841 0.2313 0.1355
0.124 0.4436 0.2558 0.1766

 . (3)

An important observation to be made when comparing daily and weekly probability transition matrices is
that the latter contain no zero entries and hence are automatically irreducible. From discussions with hospital
staff we inferred that in terms of management policies, it is the long-term behaviour induced by the weekly
probability transitions that could influence these policies rather than any daily transitions.

2.3 Steady State Distributions

In a finite Markov chain, two states communicate if it is possible to reach one from the other in a finite number
of transitions, and vice versa. A set of states that communicate with one another but not with any other states is
called a communicating class. A Markov chain is irreducible if it contains a single, exhaustive, communicating
class. The weekly transition matrices Q0, . . . , Q6 corresponds to an irreducible Markov chain as none of them
contain any zero entries, for instance, seeQ0 in (3). It is well known that irreducibility guarantees the existence
of a unique steady state distribution for the given Markov chain. Figure 1 shows the trends of these weekly
steady state probabilities for each occupancy level.

Figure 1. Comparison of steady state probabilities for each day of the week

Figure 1 shows that across the working week, the steady-state probabilities of being in a higher occupancy
state decreases until the minimum is reached on Friday (see the plots labelled with squares and diamonds).
This coincides with the discharge of patients for the approaching weekend. On weekends, the probability of
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being in a higher state begins to increase again. Naturally, the Friday minimum for High, Very High (and also
Medium) states is accompanied by a peak for the Low occupancy state. The relative stability, across the week,
of the steady-state probability of being in the Medium occupancy state is also natural and reassuring in terms
of FMC’s mode of operations. However, the fact that on Sundays and Mondays the steady state probabilities
of being in a a High or Very High state exceed 0.3 (30% long-run frequency) could be seen as a cause for
concern.

2.4 MDP Parameters and Formulation

The goal of congestion relief is cast in the framework of a finite horizon Markov Decision Process. Towards
that goal, we define probability transitions that depend on decision makers actions and the immediate costs
resulting from a choice of a given action in a given state. We adopt the notation of Filar and Vrieze (1997).

Definition 2. In a finite Markov Decision Process, the system is in state s ∈ S = {1, 2, 3, 4} at time t, and
the decision maker is obliged to choose an action a ∈ A(s) = {1, 2, . . . ,ms}. As a result of this choice, the
following probabilistic transition occurs: pt(s, s′, a) = P (St+1 = s′|St = s,At = a), and an immediate cost
ct(s, a) is accrued.

Note that, in some states, there could be only a single action, which often corresponds to a decision that ”no
action is needed”. Indeed, this is the case in the Low and Medium occupancy states introduced above. To fully
describe the MDP model we need to specify the set S of states, the sets A(s) of actions available in each state,
the time horizon T and the above probability transitions and rewards. These will be called the parameters of
the MDP.

We shall use the four states, ordered with increasing levels of occupancy, given in Definition 1. In our four
state occupancy model, actions will require physical interpretation that corresponds to various levels of inter-
vention designed to lower the occupancy. It should be noted that a selection of an action may result in altered
probabilities of the system being in any given state at the next stage. Of course, the external factors responsible
for the stochasticity in the model ensure that the decision maker cannot guarantee what state the system will
be in at the next stage. Nonetheless, the ability to influence the probability transitions can be taken advantage
of, so as to increase the likelihood of passing to states with improved occupancy levels.

2.5 Actions

Many possible actions could be taken to mitigate congestion episodes in a hospital. They include discharging
patients early, cancelling elective treatments or transferring some patients to other hospitals. All of these
actions involve releasing some number of patients from the system, so each possible action will be defined as
releasing a multiple of four patients at a time from the system up to some practical upper bound. Of course,
actions could have been more finely defined had we taken multiples of 1, 2, or 3 patients. However, releasing
a single patient may not have a discernible impact on occupancy levels. In order to consider only actions that
have a discernable level of impact, it was decided that multiples of four will be appropriate. In this study we
have decided that the set of all possible actions will be: 0: No action; 1: Release four patients; 2: Release eight
patients; 3: Release 12 patients; 4: Release 16 patients; 5: Release 20 patients.

Twenty was chosen as a cap for a release of patients, as it seemed that removing any more patients than that
was impractical when considered in the context of the current policies. Consultation with senior FMC staff
affirmed that this cap was reasonable.

We have also decided that A(1) = A(2) = {0}, A(3) = A(4) = {1, 2, . . . , 5}. Thus, the occupancy lowering
actions can be invoked only in the High and Very High states. This is reasonable because in states 1 and 2, the
hospital is already operating at a manageable level.

2.6 Cost Functions

Next, the cost functions c(s, a) need to be modelled. The challenge here is to capture both the benefit of
reducing occupancy when it is too high and the cost resulting from inconveniencing patients and the associated
harm to the reputation of the hospital. Furthermore, there is a cost involved in having a hospital that is operating
too far below capacity, which must be included in the calculation. Even though these are qualitative benefits
and costs, we require quantitative expressions that balance them.

Since our states are labelled 1,2,3,4 in the order of increasing occupancy - and the actions are also labelled in
the order of increasing numbers of patients being released - it is natural to assume that the relief provided by
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a release of a certain number of patients is more significant in the Very High state than in the High state. The
cost, on the other hand, is assumed to increase with the number of patients released from the system.

In the health care industry, around 85 percent of bed occupancy is often said to be a ”golden level of occu-
pancy”, which we shall denote by j. FMC currently has a total of 362 beds dedicated to General Medicine
and Surgery, so the golden level of occupancy, j, would be 307. Arguably, the hospital operates efficiently
when there are 307 admitted patients which, coincidentally, is the threshold between the Medium and High
occupancy states 2 and 3. In our model, we decided that using a single golden level of occupancy, j = 307, is
too restrictive. For instance, on Saturday and Sunday a lower level seems appropriate as we expect a greater
influx of patients over the weekend, who need to be ready to undergo treatments starting on Monday. This,
coupled with lower weekend discharge rates, increases the risk of congestion episodes in the following days.

The cost function is adjusted for the day of the week, with different cost values applying on busier or quieter
days. This is achieved by modifying the value of j = jt to penalise higher and lower occupancies differently.
The value for jt is moved by approximately eight patients either side of the 85% capacity value of 307. This
represents a change of approximately 2 percent of the hospital’s capacity. Saturday and Sunday are classified
as busy days, where fewer patients are discharged though admissions remain close to usual rates. The quiet
days of the week are Thursday and Friday, where patients are discharged early to free up beds for the ensuing
weekend. The actual cost functions used are given in (4) as follows:

ct(s, a) =


9
10 max(0, s− 307− a) + 1

10 max(0, 307− s), Mon-Wed
9
10 max(0, s− 315− a) + 1

10 max(0, 315− s), Thu-Fri
9
10 max(0, s− 300− a) + 1

10 max(0, 300− s). Sat-Sun
(4)

2.7 Action-dependent Probability Transitions

The actions defined in a Markov Decision Process alter the probabilities of a transition from one state to
another. There needs to be a simple way to estimate these probabilities. One method of doing this is by
splitting the aggregated states into micro-states for each number of beds occupied. Let ns,s′ be the number
of observed transitions from s beds occupied on one day to s′ beds occupied on the following day, and Ns
be the total number of days that s beds were occupied, thus: P̂ (Xt+1 = s′|Xt = s) =

ns,s′

Ns
. This is valid

without considering the effects of any actions on these probabilities. When an action a is taken, the transition
probability effectively becomes a transition from s−4a beds occupied to s′ beds occupied, which is estimated
by: P̂ (Xt+1 = s′|Xt = s,At = a) =

ns−4a,s′

Ns−4a
, recalling that each action corresponds to a multiple of four

patients being released. Using this equation it is now possible to estimate the new transition probabilities of
moving between the aggregated states under a given action. By the rules of calculus of probabilities, these
were found to be:

P (Xt+1 ∈ S′|Xt ∈ S,At = a) =
∑
s′∈S′

∑
s∈S

P (Xt+1 = s′|Xt = s,At = a)P (Xt = s|Xt ∈ S). (5)

The first factor in each of the terms of the double summation in (5) is equal to the probability of moving
from each micro-state in aggregated state at time t to each micro-state in the aggregated state at time t + 1,
conditional on the micro-state at time t being s and the action chosen being a. The second factor is the
probability of the micro-state at time t being s, conditional on the macro-state being S.

The use of actions in the above formula presents a technical challenge, as the raw data matrix of observed
transitions (ns,s′) is quite sparse. This means that some rows that are needed in the computation of the
probabilities are empty. To alleviate this problem, the empty rows of the matrix are replaced with estimates.
We choose to replace each empty row with the closest non-empty row. All entries are rounded up to the nearest
integer, as a fraction of a transition count is inappropriate. Once all empty rows are filled in, the calculations
for each of the new transition probabilities are well defined. We refer the reader to Clissold (2014) for details
of this calculation.

3 FINDING AN OPTIMAL POLICY FOR THE MDP

With a fully defined MDP, an optimal policy for the given process can be found. Strictly speaking, the preced-
ing only defines a deterministic Markov policy, but these are sufficient to find optimal policies even in larger
policy spaces that are not of interest here (e.g. see Derman (1970)).

In a finite time horizon setting, the standard method for calculating optimal policies in an MDP is the Dynamic
Programming algorithm. This can be very time consuming due to the phenomenon known as “the curse of
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dimensionality”. Fortunately, the MDP in our application is sufficiently small that the computational burden is
reasonable. A time horizon of seven days is used in this analysis to replicate the week-long planning patterns
at Flinders Medical Centre.

3.1 An Optimal Solution to the MDP

Running the Backward Recursion of Dynamic Programming algorithm on the Markov Decision Process de-
fined earlier yields an optimal solution for each state and time point as follows, where the columns correspond
to the seven days of the week starting on Monday:

f∗ =


0 0 0 0 0 0 0
0 0 0 0 0 0 0
2 2 2 0 4 4 2
5 5 5 5 5 5 5

 . (6)

The first two states, Low and Medium, only have one possible action, hence the repetition of action zero in the
first two rows. The final two rows contain the optimal actions to be taken on each day if the Markov process is
in either the High or Very High states. If the MDP is in the High state on Monday through Wednesday, eight
patients should be released, 16 on Friday and Saturday, and eight on Sunday. On Thursdays, no action should
be taken. This is an ideal outcome, as it does not require any patients to be inconvenienced but allows for the
natural operational patterns of the hospital to reduce the number of occupied beds.

If the MDP is in a state of Very High occupancy on any day of the week, then 20 patients should be released
under the policy f∗. These days occur rarely, approximately once every two weeks, so the model recommends
that staff act quickly to mitigate the congestion when these days do occur. The model also recommends that
staff take the most drastic action on days of Very High occupancy, allowing the hospital to minimise the
flow-on effects of these Very High occupancy days.

4 DISCUSSION AND CONCLUSIONS

Now that an optimal policy has been found, the improvement between the current situation and this optimal
policy can be quantified. As the time horizon considered was a calendar week, the weekly steady state distribu-
tions of Q0, . . . , Q6 under the optimal policy f∗ will be compared with the corresponding distributions under
the existing mode of operations. The comparison of steady state probabilities is shown in Figure 2 below. In
the figure, each of the four panels corresponds to the four aggregate states Low, Medium, High and Very High.
The dot (red) curve plots the steady-state probabilities of being in the fixed aggregate state on each day of
the week under the optimal policy and the square (blue) curve plots the corresponding probabilities under the
current mode of operations.

Figure 2. Comparison of steady state distributions for weekly probability transition matrices under current 
conditions and the optimal policy
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From Figure 2 it can be seen that the optimal policy makes a significant difference in the steady state proba-
bilities for each day of the week. There are increases in the probabilities of being in the two lower occupancy
states (Low and Medium) for nearly every day of the week, demonstrated by the fact that the dot curve lies
above the square curve. There are also analogous decreases of the probabilities of being in the upper capacity
states (High and Very High) for each day of the week, demonstrated by the dot curve lying below the square
curve in the bottom two panels. Note the significant improvement in the proportion of days that are considered
to have Very High occupancy; it drops to one percent or below for each day between Tuesday and Saturday
inclusive. Sunday and Monday are much larger than one percent, but are still lower compared to the current
situation by approximately one-third and two-thirds respectively. The decrease in most of the High steady
state probabilities is also a desirable outcome.

Figure 2 also indicates that there is a slight increase in the probability of High state on Sunday when compared
to the current policy and a slight decrease in that of Medium state on Friday. This seems counterintuitive,
but those anomalies are offset by corresponding changes in the probabilities of being in the adjacent states.
For instance, the decrease in the steady-state probability of the process being in the Medium state on Friday
is offset by an increase of being in the Low state. On Sundays, the steady-state probability of being in the
High state increases slightly but the probability of being in the Very High state drops by approximately one-
third. This is an advantageous outcome as it is the days of Very High occupancy that are the worst in terms of
contributing to congestion episodes.

The validation of an MDP model such as the one presented here can be addressed in multiple ways. Con-
sultation with industry experts has already provided a degree of qualitative validation. However, short of
carrying out a live experiment in implementing a new discharge policy, the most practical validation strategy
is to use synthetic data from a simulation model. Indeed, for FMC a hospital event simulation model: ar-
rival to discharge (HESMAD) was developed in parallel with the MDP model. The latter confirmed that the
optimal policy from the MDP model generates occupancy data that are in concordance with forecasts such
as those described in Figure 2. Finally, the MDP methodology outlined here is generic in the sense that it
could be adapted to policies of another hospital. Of course, the parameters would have to be re-estimated and
re-calibrated based on the data of that hospital.
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