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Abstract: The Kidney Exchange Problem (KEP) is an optimisation problem that was first discussed in Ra-
paport (1986) but has only more recently been the subject of much work by combinatorial optimisation re-
searchers. This has been in parallel with its increased prevalence in the medical community.

In the basic formulation of a KEP, each instance of the problem features a directed graph D = (V,A). Each
node i ∈ V represents an incompatible pair wherein the patient needs to trade kidneys with the patient of
another incompatible pair. The goal is to find an optimal set of cycles such that as many patients as possible
receive a transplant. The problem is further complicated by the imposition of a cycle-size constraint, usually
considered to be 3 or 4. Kidney exchange programs around the world implement different algorithms to
solve the allocation problem by matching up kidneys from potential donors to patients. In some systems all
transplants are considered equally desirable, whereas in others, ranking criteria such as the age of the patient
or distance they will need to travel are applied, hence the multi-criteria nature of the KEP.

To address the multi-criteria aspect of the KEP, in this paper we propose a two-stage approach for the kidney
exchange optimisation problem. In the first stage the goal is to find the optimal number of exchanges, and
in the second stage the goal is to maximise the weighted sum of the kidney matches, subject to the added
constraint that the number of exchanges must remain optimal. The idea can potentially be extended to multiple-
objectives, by repeating the process in multiple runs.

In our preliminary numerical experiments, we first find the maximum number of kidney matches by using an
existing open source exact algorithm of Anderson et al. (2015). The solution will then be used as an initial
solution for the stage two optimisation problem, wherein two heuristic methods, steepest ascent and random
ascent, are implemented in obtaining good quality solutions to the objective of maximizing total weight of
exchanges. The neighbourhood is obtained by two-swaps. It is our intention in the future to implement
a varying neighbourhood scheme within the same two heuristic framework, or within other meta-heuristic
framework.
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1 INTRODUCTION

Unlike the other major organs in a human body, most people are typically born with more kidneys than is
required for sustaining a healthy life. Chronic kidney disease (CKD) is increasingly common, particularly
in developed countries. In the U.S.A. alone, from 1991 to 2004, the number of patients being treated for
kidney failure with dialysis or a transplant doubled to approximately 472,000 people (Coresh et al. (2007)).
For patients suffering from end-stage renal disease, one feasible option is for them to find a living donor. A
generous spouse, family member or friend may decide to donate their second kidney to the patient. Kidney
transplant is however a complicated process and even when a patient is able to find a willing donor, they may
be unable to accept the donated kidney. Factors such as blood types or antibodies more broadly can rule out
the prospect of accepting a particular kidney.

In these situations one option for the incompatible pair is to find another incompatible pair. Suppose Pair A
and Pair B each consists of a donor-and-patient pair who are incompatible. Now, if the kidney of Donor A is
compatible with Patient B, and that of Donor B is compatible with Patient A, then the two pairs can come to
a mutual agreement to trade kidneys which may well lead to two successful transplants. Such an exchange is
referred to as a 2-way exchange. A multi-way exchange can occur, for example if Donor A donates to Patient
B, Donor B to Patient C, and so on, and finally the last donor donates to Patient A. As contracts regarding
organ transplants are unenforceable or illegal in most countries, a donor can technically withdrawal from the
program after his/her patient has received a kidney. For this reason, most multi-way kidney exchanges are
carried out simultaneously. Due to logistic and human resource reasons, most kidney exchanges involve only
2- or 3-way exchanges, although recently a 9-way exchange was carried out successfully (Wollan (2015)). In
recent years, many countries have set up programs to facilitate these exchanges, including the Netherlands, the
United States, South Korea, and Australia (Ferrari et al. (2009)).

1.1 Basic formulation of the kidney exchange problem

In its basic form, a Kidney Exchange Problem (KEP) can be defined on a directed graph, with the set of
vertices representing patient-donor pairs. An arc from one node to another indicates that the donor in the first
pair is compatible with the patient in the second pair, which indicates that a transplant may be possible.

As mentioned earlier, due to logistical issues a cycle-size constraint is applied. Usually the cycles are limited
to the size of 2 or 3, Manlove and O’Malley (2012), however depending on the circumstances, higher size limit
may be desirable as it improves the possible outcomes.

1.2 Possible variations of the basic kidney exchange problem

As research in the field has progressed, variations on the basic KEP have emerged in line with the medical
profession. One variation discussed has been the potential to include compatible pairs in the pool (which will
be represented by loops on the directed graph). In practice this variant has not reached widespread adoption
yet, as there are ongoing discussions about the ethical issues involved in the practice, as discussed in papers
such as Fortin (2013). For the test populations used in this paper we have assumed that the pool does not
contain any compatible pairs, but the tools used to develop the populations (which are available online at
https://github.com/lukenick/KidneyExchangePublic) can be used to generate pools that do contain compatible
pairs.

Another variant that has been studied is the inclusion of altruistic donors to the pool. An altruistic donor is a
donor who wants to donate a kidney to a patient, without expecting anything in return. The altruistic donor
will start a chain (also known as a domino) by donating to a patient in a pair, whose partner then donates to a
patient in another pair, whose partner then donates to another pair and so on. See Figure 1 for an example of a
KEP instance.

Exact implementations of altruistic donors can differ, in some programs the goal is to make the donor kidney
go as far as possible. In these programs an NEAD chain is formed, known either as a Never-Ending-Altruistic-
Donor or Nonsimultaneous-Extended-Altruistic-Donor chain. In these exchanges the chain continues until
something breaks it, such as a failed transplant or a donor backing out.

The other main implementation sees a series of donations occurring with incompatible pairs, before a final
donation to a patient on the terminal wait-list. The terminal waitlist comprises of patients who need a kidney
transplant but do not have a partner willing to donate in exchange. Where our test-populations include altruistic
donors, we use this interpretation.
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Figure 1. An example of a Kidney Exchange Pool with one altruist node (1), ten paired nodes (2-11) and one 
terminal node(12)

The user is able to specify the number of altruistic nodes and nodes that represent incompatible pairs to
generate a problem instance, and the program will also generate a number of terminal ‘dummy’ nodes, one
per altruistic node. These dummy nodes simulate the large wait-list of unpaired patients, so these nodes are
able to receive kidneys from any patient but cannot donate. For a general exposition of existing exact method
for KEPs of various forms, and in particular, of integer programming models and solution methodologies, see
Mak-Hau (2015).

1.3 The multi-objective nature of the kidney exchange problem

There is a lack of uniformity in the various Kidney Exchange Programs around the world, with each adopting
different algorithms or methods of organising their system that reflect local practice. Some programs consider
that all transplants are equally desirable and that the program should seek only to optimise the total number of
kidney exchanges that can occur. Others use detailed ranking criteria to determine the desirability of different
solutions to a given KEP instance, see for example Malik and Cole (2014) for a discussion of the Canadian
System amongst others Glorie et al. (2014), Manlove and O’Malley (2012). These criteria utilise both arc and
node weights, incentivising exchanges between younger patients or patients that live close to one another. As
these programs optimise the weighted sum of the solution, this can lead to a solution where less exchanges
occur but the solution is deemed as more desirable.

This paper proposes and experiments a lexicographical approach to tackle the bi-criteria optimisation of maxi-
mizing both the number of matches and the total arc weight. In our work we have considered only arc weights
but the heuristics would be easily adapted to a system with node weights. We define this as an approach in
which the KEP is split into two phases. In the first phase we set all valid arcs to a weight of 1 and find the
optimal number of transplants possible. In the second phase, we solve again with non-binary weights and
introduce the additional constraint that the total number of exchanges must be the same as in our solution for
the first phase.

2 POPULATION GENERATION

The populations used in this research have been developed using a model as described in Saidman et al. (2006).
This model considers ABO+ blood type distribution in generating patients and donors, as well as the additional
consideration of HLA cross-matching as summarised in Table 1. For full details of the model refer to Saidman
et al. (2006) work.

Using this model we have generated four groups of test populations. Each group uses the reported Australian
distribution of ABO+ blood types and comprises of 30 populations (i.e. 30 data instances). The name of a
group is in the form of “AUS X Y”, for X the number of altruist nodes and Y the number of incompatible pair
nodes. The four groups of populations are: “AUS 10 190”, “AUS 0 200”, “AUS 5 95” , and “AUS 0 100”.

3 HEURISTIC METHODS

In this section, we explain our solution methodology. The implementation is only bi-criteria at this stage, but
the idea can be extended for multi-criteria objectives. We use a lexicographical approach, in the first instance
to apply the most advanced exist algorithm Anderson et al. (2015) to find the optimal objective value that
maximizes the number of kidney matches, and then conduct an objective propagation by adding the optimal
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Table 1. PRA Population Model

Low PRA PRA <10% 5% chance of a positive crossmatch
Medium PRA PRA 10%-80% 45% chance of a positive crossmatch

High PRA PRA >80% 90% chance of a positive crossmatch

objective value as a constraint, and solve a second optimisation problem with the objective of maximizing total
arc weights by using the steepest ascent and the random ascent methods with problem specific designs.

For the first priority objective function, the optimisation problem is solved by the code provided by Anderson
et al. (2015) which is available online at https://github.com/rma350/kidneyExchange. Solution to a KEP can
be expressed in multiple formats, for our work we have represented them in the form [ [“Chain”, 1, 4, 12],
[“Cycle”, 2, 6], [“Cycle”, 7, 10], [“Cycle”, 3, 9, 8] ].

The two meta-heuristic algorithms we have attempted are random ascent, and steepest ascent.

3.1 Random Ascent

The Random-Ascent Heuristic uses a simple method to randomly generate new solutions based upon the given
initial solution, and then repeats this for multiple iterations. In each iteration it compares the new solution
generate to the old one, and uses the solution with greater weight as the basis for the next iteration. The
method used to generate new solutions is based upon the 2-Opt heuristic initially proposed by Croes (1958),
applied in areas such as the Travelling Salesman Problem and Vehicle Routing.

Algorithm 1 The Random Ascent Heuristic
1: procedure HILL-CLIMBING(population, initial solution)
2: Set best solution to initial solution
3: Set count = 0
4: while count < 1, 000 do
5: while new solution is not a feasible solution do
6: Select a random node first node from population
7: Select a random node second node from population
8: Generate a new solution by switching first node and second node in best solution
9: Check if new solution is a feasible solution.

10: if Weight of new solution is greater than Weight of best solution then
11: Set best solution = new solution
12: Increment count
13: return best solution

The use of 10,000 iterations is a parameter that can be tweaked based upon the size of the population. Ideally
the value should be high enough that one can be relatively confident that the algorithm will have hit a local
maximum by that stage. For populations of 200 nodes 10,000 has been a safe choice, however for populations
of 100 a much lower value of 1,000 would be more appropriate. The suitable function is yet to be found, and
in our future implementation, the number of iterations will be calculated as a function of size of population.

To generate a new solution, we simply switch the place of first node and second node in the original solution.
For instance, if our original solution is [ [“Chain”, 1, 4, 12], [“Cycle”, 2, 6], [“Cycle”, 7, 10], [“Cycle”, 3, 9,
8] ] and first node is 2 and second node is 8, then our new solution would be [ [“Chain”, 1, 4, 12], [“Cycle”,
8, 6], [“Cycle”, 7, 10], [“Cycle”, 3, 9, 2] ].

To check whether a given solution is feasible, we need to check whether all the arcs that it contains are valid.
We could iterate through all of the arcs, however if we have generated it from a previous solution that we know
is feasible we can simplify the process by only checking the new arcs, reducing it from linear to constant time.
In the example given above the newly generated arcs are 8 → 6, 6 → 8, 9 → 2 and 2 → 3.
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3.2 Steepest Ascent

This heuristic is similar to the previous one, with the major difference being that it examines every possible
swap at each stage rather than just a single random swap. In each iteration, the Steepest-Ascent Heuristic
considers swapping every possible pair of nodes within the population. For those swaps that would result in a
feasible solution, it select the solution with the greatest weight and uses that as the basis of the next iteration. It
continues this until it reaches a local maximum where there are no valid swaps that would increase the weight
of the solution.

Algorithm 2 The Steepest Ascent Heuristic
1: procedure STEEPEST ASCENT(population, initial solution)
2: Set old solution to initial solution
3: while flag == True do
4: Set best solution to old solution
5: for all first node ∈ V (D) do
6: for all second node ∈ V (D) do
7: Generate a new solution by switching first node and second node in best solution
8: if new solution is a feasible solution then
9: if Weight of new solution is greater than Weight of best solution then

10: Set best solution = new solution
11: if Weight of old solution > Weight of best solution then
12: flag = False
13: else
14: old solution = best solution
15: return old solution

4 EXPERIMENTAL RESULTS

4.1 Methods

The experiments detailed below were conducted using servers hosted by the website Digital Ocean. They were
run using instances of their basic droplet, with 2.4Ghz CPU and 512mb RAM.

4.2 Results

To test the performance of each heuristic we used the test libraries “AUS 10 190”, “AUS 0 200”, “AUS 5 95”
and “AUS 0 100”, each of which contain 30 instances.

For “AUS 10 190” and “AUS 0 200” we ran the Random-Ascent Heuristic five times (as it is inherently prob-
abilistic) upon each instance to better capture its expected performance. Each time we recorded the time taken
and the weight of the final solution found. We calculated the average run-time and average final weight for each
instance, as well as the average % improvement over the initial solution. We also calculate the total run-time
across the five runs for each instance, and the best weight found during the five runs and the % improvement
this represented.

For the Steepest-Ascent Heuristic we ran it upon the 30 populations in each test library, and recorded the
run-time, final weight and % improvement for each instance.

Full details of the experiments are available in the online supplement (https://github.com/lukenick/KidneyExchangePublic),
Table 2 summarises the results for each heuristic with the average across the 30 instances.

Table 3 summarises the results of similar experiments for the populations “AUS 5 95” and “AUS 0 100”. This
has however been extended to demonstrate the importance of selecting an appropriate number of iterations of
Random Ascent to be performed. For these smaller populations, running Random-Ascent for 1000 iterations
as we had previously done with the larger populations did not yield significantly better results than running it
for 250 iterations, in the table above from 0.05% to 0.5% improvement for quadruple the runtime. Instead, the
user would be better to run 4 times as many Random Ascents with 250 iterations and take the best result found
amongst those.
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Table 2. Summary of Heuristic Results for Larger Populations

Heuristic AUS 0 200 AUS 10 190
Time Final Weight % Improvement Time Final Weight % Improvement

Steepest Ascent 37.0416 12418.567 27.972% 46.749 12148 31.893%
Avg Random Ascent 12.243 12287.193 26.622% 14.790 11975.573 30.004%
Best Random Ascent 61.217 12530.7 29.134% 73.955 12220.133 32.669%

Table 3. Summary of Results for Smaller Populations

AUS 0 100 AUS 5 95
Time Final Weight % Improvement Time Final Weight % Improvement

Steepest Ascent 1.649 5422.069 16.675% 1.924 5318.267 17.867%
count Avg Random Ascent 4.465 5366.166 15.496% 4.649 5270.71 16.762%
=250 Best Random Ascent 22.324 5489.31 18.170% 23.248 5386.517 19.344%
count Avg Random Ascent 17.627 5389.945 16.005% 17.967 5282.048 16.990%
=1000 Best Random Ascent 88.137 5508.552 18.527% 89.836 5391.241 19.396%

For all the populations examined, both heuristics took slightly longer to run when the population contained
altruists but also found a comparatively higher result.

5 FURTHER DIRECTIONS

The results presented above demonstrate that both the Random-Ascent Heuristic and the Steepest-Ascent
Heuristic can be used to obtain a good quality solution for the second priority objective function of maximizing
total arc weights, with the first priority objective of maximizing number of kidney matches propagated as a
constraint. The computation time required is substantially less than it would take for obtaining an exact optimal
solution using integer programming models presented in, e.g., Mak-Hau (2015).

Further work is needed to investigate the behaviour of these two heuristics and their suitability for different
input populations. Further research is also suggested to investigate the appropriateness of other heuristics, with
initial attempts to apply simulated annealing being so far unable to obtain substantially improved results.

Another direction of computational experiment is to take consideration into a third or even a fourth priority
objective, with propagation of higher priority objectives, and investigate the computational effort required to
obtain a good quality solution with those objectives.

It is our intention in the future to implement a varying neighbourhood scheme, instead of just two-swaps,
and incorporate the VNS within the steepest ascent and random ascent framework and other well tested meta-
heuristic framework.
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