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Abstract: The advent of new electricity metering technologies means that consumers can now be billed for 
electricity using prices that vary with time-of-use. At the same time, new electrical energy storage systems 
and thermal energy storage systems give consumers an opportunity to control when they import electricity 
from the grid.

In this paper we construct a power flow model of a system with both electrical and thermal energy storage,
and use Pontryagin’s principle to derive necessary conditions for a control strategy that minimises the cost
of energy from the grid. The optimal control has just three control modes for each storage system: charge,
off, and discharge. Which mode should be used at any instant for each of the storage system depends on the
price of electricity relative to two critical prices for each of the storage systems. We use a realistic example to
illustrate how the critical prices for each subsystem can be determined, and to determine the ideal capacity of
each storage system.
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1 INTRODUCTION

Traditionally, electricity consumers pay a fixed rate for the electricity they consume, irrespective of when they
consume it. This is despite the fact that the cost of generating and distributing electricity varies considerably
with demand. With the advent of new electricity meters that measure when electricity is consumed as well as
how much electricity is consumed, new tariffs are being introduced that allow customers to be charged higher
rates during peak periods when demand is usually high, and lower rates during off-peak periods.

At the same time, generous feed-in tariffs have encouraged many consumers to install rooftop photovoltaic
systems that allow them generate electricity and be paid for excess generation fed back into the grid. As
feed-in tariffs reduce and the cost of energy storage systems drops, it will become more cost-effective to store
any excess energy generated rather than export it for a low price only to import energy later at a significantly
higher cost.

Previously we have considered the optimal control of a large concentrating solar thermal plant with storage,
to maximise the income from exporting energy into the wholesale energy market with time-varying prices
(Cirocco et al., 2015). In this paper we consider how a consumer can use both electrical energy storage
systems and thermal energy storage systems to minimise the cost of energy from the grid when the price of
electricity from the grid varies with time.

A review article by Sabihuddin et al. (2014) compares electrical and thermal storage technologies that can be
used for regulating power quality, providing bridging power, and for energy management or load smoothing.

Optimal control of thermal systems is widely documented. Henze et al. (2011) uses mathematical program-
ming to minimise energy and demand costs for an ice storage system used to cool a commercial building.
Although energy use increases due to losses in the storage system, there is a significant reduction in the de-
mand related costs. Bakos (2000) uses Pontryagin’s principle to minimise the cost of electrical energy for
underfloor space heating, with a passive solar thermal Trombe wall to provide for heat capture during the day.
LeBreux et al. (2009) describes a fuzzy logic feed forward controller with weather forecasting for controlling
for space heating with a passively heated thermal mass and separate thermal storage using electrically heated
ceramic bricks. Candanedo et al. (2013) compares a model-based predictive control algorithm against bench-
mark storage priority and chiller priority heuristics for space cooling using thermal storage, demonstrating an
improvement in cost savings ranging from 5%-30% from the benchmark controls.

In this paper we consider a consumer who has electrical loads, an electrical energy storage system, thermal
loads where the thermal energy is generated from electrical energy, and a thermal storage system. We formu-
late and solve the problem of controlling the electrical and thermal storage systems to minimise the cost of
electricity when the price of electricity varies with time of use.

2 SYSTEM MODEL AND PROBLEM FORMULATION

Figure 1 depicts the possible flows of electrical and thermal power for a grid-connected consumer with both
electrical and thermal energy storage systems and renewable energy sources available “behind the meter”
where the consumer is metered for net energy import or export. The power flows all vary with time and are all
non-negative. They are as follows:

• Gimp is electrical power imported from the grid, and is determined from other power flows in the system

• Gexp is electrical power that flows back to the grid, and is determined from other power flows in the
system

• Re is electrical power supplied from local renewable energy sources such as photovoltaic panels, and is
a given function of time

• Le is the electrical load, and is a given function of time

• Pet is the electrical power used to generate heating or cooling, and depends on downstream thermal
power flows

• Lt is the thermal load, and is a given function of time

• Ce is electrical power used to charge the electrical storage system, and is a time-varying control
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• De is electrical power discharged from the electrical storage system, and is a time-varying control

• Ct is thermal power used to charge the thermal storage system, and is a time-varying control

• Dt is thermal power discharged from the electrical storage system, and is a time-varying control.

Electricity
Grid

Electrical
Store, ηe

κet

Electrical
Loads

Local RE
Supplies

Thermal
Store, ηt

Thermal
Load

Gimp

Gexp

Re

Le

Ce De

Pet κetPet Lt

Ct Dt

Figure 1. Power flows for a consumer with renewable and grid connected electricity supplies fitted with both
electrical and thermal storage systems for servicing a mix of electrical and thermal loads

Electrical power is converted to thermal power by a heat pump or compressor, which has a constant coefficient
of performance κet ≥ 1 for the purposes of this initial investigation we avoid the added complexity of varying
this parameter with respect to ambient temperature in order to establish the salient aspects of an optimal control
strategy.

At the first electrical distribution node, the power flows are related by

Re +Gimp −Gexp − Le − Ce +De − Pet = 0. (1)

The thermal subsystem input electrical power, Pet, is dependent on the two thermal storage controls and the
given thermal load, and is given by

Pet = (Lt + Ct −Dt) /κet. (2)

We wish to minimise the cost of energy for this system during some time interval [0, T ]. The cost πi of
imported electrical energy and the price πe paid for exported electrical energy are both given functions of
time, and so the total cost of operating the system is

J(Gimp, Gexp, πi, πe, t) =

∫ T

0

(πiGimp − πeGexp) dt. (3)

If we use (1) and (2) to write Gimp and Pet in terms of the remaining power flows, the objective function (3)
can be expressed in terms of the given power flows and the introduced control flows as

J(πi, πe, Re, Le, Lt, Ce, De, Ct, Dt, Gexp, t)

=

∫ T

0

(
πi

(
Gexp −Re + (Le + Ce −De) +

(
Lt + Ct −Dt

κet

))
− πeGexp

)
dt→ min. (4)

The energy levels in the electrical and thermal stores are given by the differential equations

d

dt
Qe = ηeCe −De, Qe(0) = Qe0 (5)

and

d

dt
Qt = ηtCt −Dt, Qt(0) = Qt0 (6)

where ηe and ηt are the constant efficiencies of the electrical and thermal storage systems respectively. In
practice the stored energy in each system would be constrained by lower and upper bounds. We will assume
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that storage capacity constraints are never active, so that we can determine the ideal capacity of the electrical
and thermal storage systems. However, we will impose constraints

Qe0 ≤ Qe(T ) (7)
Qt0 ≤ Qt(T ) (8)

which ensure that the energy stored in each storage system at time t = T is at least as much as stored at time
t = 0, so that the system can run indefinitely.

We impose the following limits on the power flows:

0 ≤ Gimp ≤ Ḡimp (9)
0 ≤ Gexp ≤ Ḡexp (10)
0 ≤ Re ≤ R̄e (11)
0 ≤ Ce ≤ C̄e (12)
0 ≤ De ≤ D̄e (13)
0 ≤ Ct ≤ C̄t (14)
0 ≤ Dt ≤ D̄t (15)
0 ≤ Lt + Ct −Dt ≤ κetP̄et. (16)

3 NECESSARY CONDITIONS FOR OPTIMALITY

We use Pontryagin’s principle to find necessary conditions for an optimal control. We first form a Hamiltonian,
to be maximised:

H(Re, πi, πe, Le, Lt, Ce, De, Gexp, Ct, Dt, Qe, Qt, λe, λt, t) = −J + λe
d

dt
Qe + λt

d

dt
Qt

or

H[t] = πiRe − πiLe − (πi/κet)Lt + (πe − πi)Gexp + (ηeλe − πi)Ce + (πi − λe)De

+ (ηtλt − (πi/κet))Ct + ((πi/κet)− λt)Dt (17)

The controls of our system are the exported power Gexp, the electrical storage flows Ce and De, and the
thermal storage flows Ct and Dt. To be optimal, these controls must be chosen to maximise the Hamiltonian.
A preliminary observation is that if πe < πi, as is almost always the case, the Hamiltonian is maximised when
Gexp is minimised.

To further simplify our analysis, we will consider a system with no renewable power input and where the
export price is set to zero so that there are no opportunities for arbitrage. By limiting the investigation to this
simpler form of problem, the associated Hamiltonian becomes

H[t] =− πiLe − (πi/κet)Lt + (ηeλe − πi)Ce + (πi − λe)De

+ (ηtλt − (πi/κet))Ct + ((πi/κet)− λt)Dt. (18)

The evolution of the adjoint variables λe and λt is given by

dλe
dt

= −∂H [t]

∂Qe
= 0 =⇒ λ∗e is constant (19)

and

dλt
dt

= −∂H [t]

∂Qt
= 0 =⇒ λ∗t is constant. (20)

The optimal adjoint values λ∗e and λ∗t are constant for both forms of the Hamiltonian, (17) and (18).

For the simplified problem with Hamiltonian (18), the optimal controls for the electrical energy storage system
depend on the value of the price πi relative to the optimal adjoint value λ∗e , as shown in Table 1.
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mode condition Ce De

Charge πi < ηeλ
∗
e max min

Off ηeλ
∗
e < πi < λ∗e min min

Discharge λ∗e < πi min max

Table 1. Optimal control modes for the electrical storage system

mode condition Ct Dt

Charge πi < ηtκetλ
∗
t max min

Off ηtκetλ
∗
t < πi < κetλ

∗
t min min

Discharge κetλ
∗
t < πi min max

Table 2. Optimal control modes for the thermal storage system

Similarly, the optimal controls for the thermal energy storage system depend on the value of the price πi
relative to κetλ∗t , as shown in Table 2.

It appears that the optimal controls for the two storage systems are independent, but this is not quite the case.
Consider a scenario where we need to discharge the electrical store, and we are not allowed to export power. If
the electrical load is low then the amount we can discharge from the electrical store will depend on Pet, which
will in turn depend on the thermal load and on whether we are charging or discharging the thermal store.

There are situations where further analysis is required to determine the optimal control. To illustrate this,
consider the further simplified system with ideal storage efficiencies ηe = ηt = 1. In this case each store must
be either charging or discharging—there is no ‘off’ mode. There are six possible combinations of electrical and
thermal storage controls, depending on whether κetλ∗t is bigger or smaller than λ∗e . These cases are illustrated
in Figure 2.

πi

πi

κetλ
∗
tλ∗e

Ce ↑ , De ↓ Ce ↓ , De ↑ Ce ↓ , De ↑
Ct ↑ , Dt ↓ Ct ↑ , Dt ↓ Ct ↓ , Dt ↑

κetλ
∗
t λ∗e

Ce ↑ , De ↓ Ce ↑ , De ↓ Ce ↓ , De ↑
Ct ↑ , Dt ↓ Ct ↓ , Dt ↑ Ct ↓ , Dt ↑

Figure 2. Combinations of optimal control modes for an import price πi relative to the adjoint variables
λ∗e < κetλ

∗
t (upper) and κetλ∗t < λ∗e (lower) for ideal storage efficiencies ηe = ηt = 1 and electro-thermal

power conversion factor κet. The arrows indicate whether the control should be minimised or maximised.

Now consider the two cases, depicted on the right of Figure 2, where charging of each storage system is to be
minimised and discharging of each storage system is to be maximised. If the total load is sufficiently small
that it can be met without importing electricity then Gimp will be set to zero, and we must set De and Dt so
that

De +Dt/κet = Le + Lt/κet. (21)

If the loads are sufficiently small that both loads can be met by discharging the electrical store only (Le +
Lt/κet < D̄e) and the thermal load can be met by discharging the thermal store only (Lt < D̄t) then two
possible control strategies are:

• use the electrical store to meet the electrical load (De = Le) and the thermal store to meet the thermal
load (Dt = Lt), in which case the Hamiltonian is Ha = −λeLe − λtLt
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Figure 3. Load profiles (top) and price profile (bottom) for our example.

• use the electrical store to meet both the electrical and thermal loads (De = Le + Lt/κet, Dt = 0), in
which case he Hamiltonian is Hb = −λeLe − λe/κetLt.

If λe/κet < λt then Ha < Hb and the first option is better, otherwise the second option is better.

4 ALGORITHM DESCRIPTION AND EXAMPLE

We will illustrate the construction of a control sequence meeting the necessary conditions for an optimal
control using an example where export to the grid is not allowed and where there is no renewable power.
Figure 3 shows the electrical and thermal load profiles, and the price profile, for a dairy processing plant
over a 31-day period. Electrical storage efficiency is ηe = 0.8, thermal storage efficiency is ηt = 0.95 and
electro-thermal power conversion factor is κet = 2.8.
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Figure 4. Final thermal store state as a function
of κetλt.
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Figure 5. Electrical storage state as a function of
adjoint variable λe for κetλ∗t = 0.09173357.

For any given pair (λe, λt) we construct a control sequence by first using the control modes from Table 2 to
set Ct and Dt to meet the thermal load, then calculate Pet, then use the control modes from Table 1 to set Ce

and De and hence calculate Gimp. Each pair (λe, λt) results in a final state (Qe(T ), Qt(T )). The lowest cost
strategy will have Qe(T ) = Qe0 and Qt(T ) = Qt0.

Because we have chosen to meet the thermal loads first, the final state Qt(T ) of the thermal store will depend
only on λt, as shown in Figure 4. In this example we start with Qt0 = 0, so wish to finish with Qt(T ) = 0;
we need to set λt = 0.09173/κet.

With λt set, we now search for a value of λe that gives Qe(T ) = 0, as shown in Figure 5.

Figure 6 shows the energy stored in the electrical and thermal stores for the resulting control profile, which
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also indicates the storage capacities required for the electrical and thermal stores.
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Figure 6. Stored energy profiles for our control profile.

5 CONCLUSION

We have formulated the problem of controlling an energy system with electrical and thermal energy storage
when the cost of grid electricity varies with time of use, and used Pontryagin’s principle to determine necessary
conditions for an optimal control when grid export is not permitted and there is no local energy supply.

Each storage system has three possible control modes: charge, off, and discharge. The optimal mode for each
storage system at any instant depends on the price of electricity relative to two critical prices—one for the
electrical storage system and one for the thermal storage system.

We have used an example to illustrate how a control sequence satisfying the necessary conditions for an
optimal control can be constructed. But we have also shown that further analysis is required to find the optimal
control, and to prove uniqueness. Future work will also investigate the effect of storage capacity constraints
on the optimal control.
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