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Abstract: The occurrence of extreme events can challenge the capacity of water utilities to deliver potable 
water of sufficient quality with respect to minimising health risks to consumers. As a consequence, proactive 
risk-assessment and decision support tools are necessary to assist in managing and mitigating such critical 
events effectively. However, the utility of these tools can be limited due to the lack of comprehensive data 
and a high degree of epistemic and stochastic uncertainty.  

We use a combination of Bayesian Network (BN), System Dynamics (SD) and participatory modelling to 
develop a risk assessment tool for managing water-related health risks associated with extreme events. The 
combination of BN and SD modelling offers a number of advantages over other environmental modelling 
techniques; the capacity for dealing with a high degree of uncertainty, the use of feedback loops (SD only) 
and the ability to elicit and integrate quantitative and qualitative data (including expert opinion). 

The risk assessment tool developed is applied to the raw water delivery system supplying Prospect water 
filtration plant system (Sydney, Australia), which is the main source of potable water for the Sydney 
metropolitan region. Key-stakeholders were engaged in developing and populating the conceptual models 
that form the basis of developing the BN and SD models. Conceptual models were developed by the 
stakeholders around the key indicator parameters of turbidity, water colour and Cryptosporidium sp. levels. 
These three conceptual models were combined into a single risk model and used for developing separate BN 
and SD models. Additional stakeholder workshops were conducted to refine the models (structure and 
parameter values) and to provide validation of the model outputs.  

Here we present the development of a BN model designed to understand the risk of extreme events on the 
ability to provide potable water of a specified quality. The model has undergone development and 
preliminary parameterization via two participatory workshops. However, its development is an ongoing 
process with the next stage involving supplementing the ‘expert opinion’ used to parameterize the model so 
far with ‘hard’ data.   

The completed models will quantify the sensitivity of the Prospect raw water delivery system to different 
types and combinations of extreme events (both natural and anthropogenic). The BN model will provide a 
risk management tool for estimating the probability of (top-down modelling), and requirements for (bottom-
up modelling), meeting water quality guidelines. The SD model will provide a means of testing the 
implementation of different management scenarios and the impact that this has on water quality for different 
time horizons.   

Overall, these complementary modelling methodologies will assist water treatment operators, water 
managers and other stakeholders in developing evidence-based mitigation strategies leading an to enhanced 
resilience of the system. 
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1. INTRODUCTION 

Recent history in Australia has been characterised by a range of extreme weather events (e.g. droughts, 
Brisbane floods, cyclone Yasi, Victorian bushfires). These events have impacted on the ability of water 
utilities to provide potable water of a required standard to consumers or other bulk water clients. At issue, are 
the short- and long-term impacts of extreme events on the water quality at both pre- and post-treatment 
(including distribution and end-point) points in the system. Extreme events are projected to change in 
magnitude and frequency over the next century (IPCC, 2014), further exacerbating the pressures on water 
quality management. However, there are large uncertainties associated with the timing and nature of specific 
future events and this uncertainty is a major contributor to the challenge of water management. The key 
health-related water quality parameters that mostly concern the water utility involved in this research project 
(i.e. WaterNSW) in case of extreme events are: water colour, turbidity, and Cryptosporidium sp. 

Water colour is a key parameter in drinking water reservoirs as it can affect the physical and biological 
properties of the whole lake, as well as creating discolouration of the raw water redirected to the water 
treatment plant (WTP). If discoloured water is supplied to the consumers, this may trigger complaints 
directed towards the water utility, thus the water utilities must meet the guidelines levels set by the Australian 
Drinking Water Guidelines.  Furthermore, if coloured water leaves the WTP, the dissolved organic matter 
present in this water can react with chlorine when it enters the potable water system leading to the formation 
of carcinogenic trihalomethanes (THM’s), one of the over 600 disinfection by-products currently reported in 
drinking water (Hrudey, 2009). However, the biggest issue with water colour is increased coagulation 
demand, thus increasing in turn the risk of filter failure at the WTP and breakthrough, leading to a direct 
health risk. 

Water turbidity refers to how clear the water is. The greater the amount of total suspended solids in the water, 
the murkier it appears and the higher the measured turbidity. These impurities may include clay, silt, 
inorganic/organic matter, soluble coloured organic compounds, plankton and other microscopic organisms 
(EPA, 1999). Turbidity is a result of suspended particles and these can provide food and shelter for 
pathogens, which if not effectively removed, can promote regrowth of pathogens in the distribution system, 
leading to waterborne disease outbreaks (EPA, 1999). Higher turbidity levels are therefore pathogen risk 
factors (Khan et al., 2013), typically associated with higher levels of disease-causing microorganisms such as 
parasites, viruses and some bacteria, which can cause e.g. cramps, diarrhoea, headache and nausea (Sarai, 
2006).  

Cryptosporidium sp. oocysts are often excreted in large amounts with the faeces of infected humans and 
animals (Graczyk and Fried, 2007), which can enter surface waters directly or through effluents and runoff 
from fields that are polluted by sewage sludge or manure (Graczyk et al., 2008; Mons et al., 2009) resulting 
in pollution of receiving waters. Importantly, these (oo)cysts have the capacity to remain infective for months 
in environmental waters and are highly resistant to chlorinated disinfectants (Betancourt and Rose, 2004). 
Therefore, waterborne contamination is a growing concern for water suppliers, causing widespread outbreaks 
of these diseases (Putignani and Menichella, 2010). For example, a contamination of cryptosporidium, along 
with Giardia, occurred in the water supply system of Greater Metropolitan Sydney during the 1998 Sydney 
water crisis (McClennan, 1998). 

For the Sydney area, which is the location of this study, it is predicted that due to climate change, the number 
of days of extreme rainfall (> 40mm/day), as well as the number of very hot days (>37°C) and continued dry 
spells (>15days) will increase considerably (SCA, 2010). Therefore, the risk of bushfires, extreme rainfall 
events or prolonged droughts is expected to increase, which will have detrimental effects on the water quality 
in reservoirs. Water quality management in this context requires a multi- and inter-disciplinary approach that 
is both holistic and probabilistic, to develop appropriate management strategies. Strong support and active 
participation from practitioners within the water industry, whose experiences with past occurrences of 
extreme events and detailed understanding of many facets of the system is invaluable. Both qualitative and 
quantitative information about the system is also required. Traditional modelling approaches often deal 
poorly with such requirements.  

This paper describes the methodology used to develop an extreme events risk assessment tools, using a 
combination of Bayesian Network (BN) modelling and System Dynamics (SD) modelling. Section 2 
illustrates the benefits of such methodology and the key-steps for the development of such tool. Section 3 
describes the activities that led to the development of the conceptual model, while Section 4 explains how 
this was then translated into a BN. Section 5 ends the paper by summarising the current findings and the next 
steps, such as the development of the SD model.  
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2. METHODS 

The Research Team is developing an extreme event risk assessment tool using Bayesian Network (BN) 
modelling and System Dynamics (SD) modelling. A combination of these two modelling frameworks is 
proposed because of the following attributes: 

• Both provide a modelling framework that allows prediction of an outcome (e.g. decline in water quality) 
even when the determining conditions (e.g. an extreme event) are both variable and uncertain.  

• Both are able to integrate data from different sources (e.g. model output, monitoring and expert opinion) 
and of different types (environmental, social and economic) into a single model.  

• SD is able to analyse the behaviour of complex systems (e.g. water quality management) and their 
interacting components with many feedbacks and with changes over time. 

• BN provides an ideal representation for combining prior knowledge with data, and it is particularly 
helpful when dealing with uncertainty (Nadkarni and Shenoy, 2004) 

The modelling process comprised the following core steps: 

• An initial expert workshop was held in order to define the scope of the project, select the case-study 
sites, the key water quality parameters to be modelled and related levels of service, and to populate the 
preliminary conceptual models. 

• The conceptual model was converted into a BN by the Research Team. In order to fill the Conditional 
Probability Tables (CPTs) attached to each node of the BN, a second expert workshop, with water utility 
experts from different fields, was held.  

• The BN architecture and findings, along with available historical data, will be used to develop the SD 
model. 

3. CONCEPTUAL MODEL DEVELOPMENT 

3.1.  First expert workshop, Sydney 

The following section describes the outcomes of the first expert workshop held in Sydney (Australia) in 
2015. The workshop process can be separated into three distinct components. The first part of the first expert 
workshop was used to identify the scope (being the Prospect water filtration plant raw water supply system), 
as well as the key water quality parameters of concern and the respective critical levels of these parameters 
that would lead to the expected Level of Service to be ‘not guaranteed’. These parameters were identified as: 
turbidity, water colour and Cryptosporidium sp. and the agreed levels of service were, respectively: 40 NTU, 
60 CU400 and 10 IFA/10L (from “immunofluorescence assay” method) adjusted for recovery. The second 
part of the first expert workshop consisted of “unstructured” interviews, where the experts were asked to 
identify the parameters affecting the key-variables being modelled. The third part of the workshop consisted 
of “structured” interviews, meaning that the experts were asked to modify a preliminary conceptual model 
built based on the outcomes of the unstructured interviews. An outcome from the workshop was the 
development of three separate models, one for each critical parameter.  Importantly, the type of “extreme 
events” (including combinations of these e.g. drought followed by flood), were identified at this stage of the 
project. Thus, extreme events were defined as being related to (both individually and cumulatively) inflow 
events (rainfall), bushfire and/or drought. The availability of critical infrastructure during extreme events was 
also identified as an important element to be factored into this analysis. 

The following provides more detailed information about the process that was undertaken. As a first step of 
the conceptual model development, the main parameters directly affecting turbidity, water colour or 
Cryptosporidium sp. levels were identified (Table 1). The causality is positive if an increase in the input 
value relates to an increase in turbidity, colour and/or Cryptosporidium sp. (i.e. decrease in the water quality). 
Definitions of key-parameters from Table 1 are: 

• Avoidance capacity: this is linked to the presence of, for example, intake towers with multiple gates at 
the reservoir, which allow the selection of the optimal (with regards to water quality) intake depth. 
However, its usefulness is limited during lake circulation periods (e.g. winter turnovers) as the water 
quality is uniform throughout the water column. 

• Spill: if the dam is spilling (due to the storage level exceeding the full capacity), then the water quality is 
expected to deteriorate as the avoidance capacity is reduced due to the water moving from the bottom to 
the top of the dam wall (assuming the inflow coming as an underflow); the main factor affecting a 
possible spill is the storage level. 
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• Use of alternative reservoirs: the presence of other reservoir(s) that can be used to deliver raw water to 
the Prospect WTP. This allows for drawing raw water from other sources to provide the most appropriate 
water quality to optimise and ensure effective treatment. Raw water supplying the Prospect WTP is 
typically drawn from Warragamba Reservoir, but the Upper Canal supply route (which includes 
Cataract, Cordeaux, Nepean and Avon Reservoirs) and Prospect Reservoir itself can be also used as a 
backup source of water. Factors affecting the use of alternative reservoirs were identified during the 
workshop as asset failure and contamination (e.g. bushfire damage).  

• Ashes: originated from bushfires and subsequently washed into the reservoir via surface runoff resulting 
in increased colour and turbidity in the reservoir. The main input factors were identified as the presence 
of a fire in forested areas around the catchment and rainfall events following the fire. 

• Runoff and Crypto Runoff: the runoff following a high rainfall event will result in significant sediment 
and organic matter loading, increasing the levels of turbidity and colour in the reservoir. In some cases 
the amount of Cryptosporidium sp. also will increase. It was decided during the workshop for modelling 
purposes, to create separate variables for ‘runoff’ and ‘crypto runoff’. The rationale for this approach is 
that the runoff affecting turbidity and colour is mainly influenced by the amount of rainfall (intensity and 
duration) and catchment size, but in order for the runoff to generate high Cryptosporidium sp. levels, 
other inputs (e.g. the presence of intensive livestock production, onsite sewage systems, grazing, and the 
possibility of an overflow of a Sewage Treatment Plant) can play an important role. 

• Swamp runoff: another special case of runoff, which affects colour only. As for the creation of a “crypto 
runoff” variable separated from the main “runoff” variable, this specific fraction of the runoff was kept 
separate as it is affected by different inputs (e.g. swamp size). 

• Landslip event: indirect effect of rainfall events; it would increase the turbidity levels in the reservoir. 
• Storage level: typically, a higher storage level implies more water column stability, more dilution, and 

generally a better water quality. It increases the avoidance capacity (i.e. more gates of the intake tower 
under water, thus more choice), but increases the risk of spill. It is affected by mainly the runoff and 
direct rainfall. 

Table 1. List of water quality predictors and their effect (polarity) on turbidity, colour and cryptosporidium. 

PREDICTOR CORRELATION WITH 
TURBIDITY 

CORRELATION WITH COLOUR CORRELATION WITH 
CRYPTOSPORIDIUM 

Spill + + +

Avoidance Capacity - - - 

Use of Alternative Reservoirs - - - 

Ashes + + NA 

Runoff + + + 

Crypto Runoff NA NA + 

Swamp runoff NA + NA 

Landslip events + NA NA 

Storage Level - - - 

Following these considerations, three separate conceptual models were built collectively by the workshop 
participants, where connections and nodes were defined in accordance with Table 1. A feature of these 
models is that the main factors affecting water quality (as selected by the participants) were not only 
environmental (e.g. rainfall, drought, fires) but also related to the attributes and facilities of the water utility 
(e.g. variables such as avoidance capacity, alternative reservoirs, asset failure), land use (e.g. agricultural 
areas, forested areas, farms, grazing, intensive livestock) and even extreme human actions (such as 
intentional contaminations). The diversity of the conceptual model variables supported the choice of using 
BN and SD modelling frameworks for the project. Both frameworks are integrative and deal competently 
with limited and/or multi-field knowledge. 

3.2.  Development of a single system conceptualisation model 

Following the first workshop, the three separate models were merged into a single one (Fig. 1). Thicker 
connections indicate that a node directly affects at least one of the three key-parameters. Additionally, these 
connectors are blue when the input is a positive factor (i.e. an increase in the input value implies a decrease in 
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the target parameter) and red if the input is a negative factor (i.e. an increase in the input value implies an 
increase in the target parameter). All the main input parameters’ names (i.e. those directly affecting turbidity, 
colour and/or cryptosporidium) are also presented in bold and purple. All the secondary connections are 
thinner and in dark red. 

 

Figure 1. Final comprehensive conceptual model of factors affecting colour, turbidity and cryptosporidium. 

4. BAYESIAN NETWORK DEVELOPMENT 

The comprehensive conceptual model (Fig. 1) was used as the foundation for developing a Bayesian Network 
(BN) that would be used to assess the probability of delivering the required level of service under different 
conditions (scenarios). Much of BN development and application has emerged from Artificial Intelligence 
research (Korb and Nicholson, 2010) and they are an increasingly popular modelling technique, especially 
when the system being modelled presents a high degree of uncertainty and complexity, such as in ecosystems 
and environmental management (Korb and Nicholson, 2010).  Each variable within a BN is presented as a 
node. A node that has direct input connections (arcs) from at least one other node (“parent”) is called a 
“child” node for that parent node. The strength of the connection (also known as conditional dependence) 
between a child node and its parent node(s) is quantified through probability distributions. There is one 
probability distribution for each combination of possible values of the parent node states. These conditional 
probabilities are defined in the Conditional Probability Tables (CPTs) attached to each node that has at least 
one parent node. Uncertainty is measured through probability by the BN, i.e. the higher the uncertainty, the 
wider the probability distribution; however, when more information/data becomes available and uncertainty 
decreases, the probability distribution usually becomes narrower and the knowledge of the true value of the 
node increases. Evidence is entered into the BN by substituting the a priori belief with observations (hard or 
soft evidence) or scenario-based values for a number of nodes (Chen and Pollino, 2012). Interactions 
between variables are displayed clearly and users can easily interrogate the reasoning behind the model 
output, thus providing a more transparent approach when compared to other “black-box” modelling 
techniques such as artificial neural networks (Chen and Pollino, 2012). In general, BNs are suitable for small 
or incomplete data sets: BNs can easily handle missing or little data, and typically can yield good prediction 
accuracy even with a small sample size, provided that the model structure is well defined (Uusitalo, 2007). 
Also, it is possible to combine different sources of data: that is, where ‘hard’ data (survey, model and/or 
monitoring data) are not available, probabilities can be entered manually through expert knowledge. Thus 
hybrid sources of data (historical data, expert knowledge) can be used to overcome historical data limitations 
(e.g. where historical trends are not good predictors of future events) or to enhance the model performance 
(Uusitalo, 2007). Overall, they provide a suitable support tool for decision makers, as costs and risks 
associated with different management strategies can be assessed easily; in addition, the model simulation is 
typically extremely fast compared to some process-based models (Uusitalo, 2007). 

After the original conceptual model was built (Fig. 1), the Bayesian model structure was defined using the 
methodological framework of Chen and Pollino (2012). As model parsimony is essential (but balanced with 
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model accuracy), it is important to retain only influential variables (influential on the key nodes), and to 
reduce the number of states for each node to a minimum. This assists with producing conditional probability 
tables that can be reasonably populated by expert knowledge. An additional requirement for developing the 
BN structure is that feedback loops must be avoided. Thus, several minor modifications were performed by 
the Research Team after consultation with a water industry expert prior to conducting the second workshop 
(where the CPTs were populated by expert opinion). The final BN structure is illustrated in Fig. 2. Different 
colours represent different categories of variables (e.g. blue are environment-related, orange are 
anthropogenic, green are water utility-related, yellow are miscellaneous), thus clearly showing the capacity of 
BN of dealing with multi-field problems. 

 

Figure 2. BN model of factors affecting the “Level of Service” 

The structure of the conceptual model that led to the BN development was defined during and after the first 
participant workshop. This included preliminary definitions of the variables and connections. The second 
workshop was used as a mechanism to obtain feedback on the model (including slight modifications to the 
structure), populate the CPTs of the BN with expert evidence and identify where alternative data might be 
available (e.g. Bureau of Meteorology data regarding rainfall, wind, or El Nino/La  Nina states). The 
workshop was held in the Water NSW’s main building in Penrith, Sydney (May 2015). Ten experts from 
different fields (e.g. water quality, water treatment, microbial risk, system configuration, risk management, 
operations management) attended the workshop and each was invited to populate all of the CPTs that sat 
behind the BN structure. This activity took about 3 hours for each expert using a ‘pen and paper’ approach 
(i.e. expert is given a blank CPT and asked to assign probabilities for each of the CPT scenarios). Some 
important issues (e.g. nodes definition, model structure, length of the CPT population activity, contrasting 
opinions between stakeholders) emerged and were addressed by the Research Team during the workshop. 
For instance, it was decided to collect the expert opinions independently rather than having an open 
discussion on each node. This made the process faster and avoided the potential impact of stronger 
personalities influencing the professional judgement of others and to prevail and eventually dictate his belief; 
it also provides more meaningful data, as in case of group-level engagement, the variability in the assigned 
probabilities would be lost as they will be the result of a compromise between the stakeholders. To account 
for the different probabilities assigned by the participants, an auxiliary node was included (see Richards et 
al., 2013). This auxiliary node representing the stakeholder beliefs was connected to all the nodes whose 
associated CPT was filled by the experts. By doing so, it is possible to run the BN and assess the levels of 
risk based on probabilities assigned by people with different areas of expertise (e.g. the expert opinions of 
microbiologists versus operators versus bushfire experts). In this way it was also possible to assess how 
sensitive the model was to the different experts’ opinions and how these manifest on the probability of 
delivering water of the required standard (i.e. the focus of the BN). This is a strength of BN models when 
applied to a problem requiring the integration of multiple types of expertise (e.g. reservoir dynamics, bushfire 
dynamics, land-use expertise, microbial risks expertise, water treatment, etc.). By using a BN and populating 
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it with expert opinion, these diverse areas of expertise can be integrated robustly (using Bayes theorem, 
which provides the mathematical basis for BNs) within a single model. In case of strong diverging opinions 
around some nodes, it is also possible to engage the different stakeholders again in order to understand the 
different points of view. 

5. DISCUSSION AND CONCLUSION 

The research presented is part of an ongoing project and further activities and results are expected. Firstly, 
the developed BN can now be used by stakeholders to assess the risk of unacceptable levels of turbidity, 
water colour and Cryptosporidium sp. following one, or a combination of, extreme events. Importantly, 
although the generic negative effects of such extreme events were already known, numerical outcomes are 
now provided by the BN, so that it is possible to list those events from the most to those with least impact on 
the water quality, for this particular catchment. Also, BNs can be used, not only through a “top-down”, but 
also a “bottom-up” approach: that is, the worst input scenarios can be assessed by assuming unacceptable 
levels of one/multiple water quality parameters to be expected. Also, the effect of different management 
intervention options (e.g. increased maintenance) can be easily assessed, thus enabling the water managers to 
identify those providing the higher benefit compared to the cost. 

Future activities will focus on the use of System Dynamics (SD) and the combination of both approaches. 
The available historical data will be collected and used to assess the expected future temporal trends in the 
water quality assuming a number of extreme events, consistent with historical data, will occur. The expected 
model will be complementary to the BN, thus bringing consistency and credibility to the overall modelling 
approach adopted.  
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