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Abstract: The change of climatic patterns is a major concern in the Pampanga River basin, the Philippines,
and may intensify the magnitude of drought and flood hazard events under climate change uncertainty. Most
of municipal water demand requirements for the Metro Manila relies on the Angat dam, which drains only
546 km2 at the headwaters of the Pampanga River basin, as mentioned in Part 1 of this study. In this study,
the climate change impacts were investigated for the RCP8.5 greenhouse gas emission scenario using 13 of
higher-resolution general circulation models (GCMs) in CMIP5 and 4 ensemble members of the 20-km super
high resolution atmospheric GCM, MRI-AGCM3.2S, with different sea surface temperature (SST) and sea ice
distributions. The simulated daily precipitation was bias-corrected with the daily gridded rain gauges dataset
as a reference observation, after the bilinear interpolation from the coarse grids of GCMs to the fine grid of
the observation dataset. To estimate the meteorological hazards of droughts and floods due to climate change,
we compared the precipitation characteristics between present (1979-2003) and future (2075-2099) climate
projections using the standardized precipitation index (SPI) and the comparative SPI (cSPI).

The cSPI is a new concept designed to intuitively evaluate the meteorological drought in target datasets on the
basis of the reference dataset. Computing the SPI by substituting future climate precipitation in the cumulative
distribution function (CDF) with parameters derived from the corresponding present climate, we can compute
the cSPI in future climate projections on the basis of the present climate projection. The cSPI could estimate
not only the probability change of extremes but also the change of mean precipitation due to climate change
simultaneously.

From cSPI results, the interannual variability of the cSPI in future climates increased significantly, but the
average of the cSPI was almost the same as in present climate projections in the SST ensemble average of
MRI-AGCM3.2S. As the result, both the meteorological drought and flood increased in MRI-AGCM3.2S
simulations. In the higher-resolution model ensemble average CMIP5, the interannual variability of the cSPI
in future climate was almost the same as in present climate projections, but the average of the cSPI signif-
icantly increased. As the result, the meteorological drought might be decreased in future but the heavy wet
conditions could be increased in CMIP5 multi-model ensembles. It would be required to adapt to the heavier
wet condition in the Angat dam in the end of the 21st century under the RCP8.5 emission scenario than the
present climate condition.

The comparative standardized index concept of the cSPI approach, computing standardized index by substi-
tuting target datasets in the CDF with parameters derived from the reference dataset, is applicable to the other
standardized indices, such as the standardized streamflow index (SSI), the standardized reservoir storage in-
dex (SRSI), and the standardized precipitation evapotranspiration index (SPEI), which is obtained with various
probability distributions. For example, the comparative SRSI is utilized to evaluate socio-economic droughts
under climate change in Part 3 of this study.

Keywords: Standardized precipitation index (SPI), comparative SPI (cSPI), meteorological drought, precipi-
tation, climate change
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1 INTRODUCTION

The standardized precipitation index (SPI) is a versatile tool to monitor and analyse the meteorological drought
on multiple timescales (e.g., McKee et al., 1993; Edwards and McKee, 1997). The SPI is a powerful and flex-
ible index with a simple calculation procedure. In the SPI calculation, the precipitation is the only required
meteorological variable and is used as an input to compute cumulative distribution function (CDF) for the SPI
basis. In 2009, the Lincoln Declaration on Drought Indices recommended that the use of SPI by national me-
teorological and hydrological services world-wide for characterizing the meteorological drought, in addition
to other drought indices that were in use in their service (WMO, 2012).

Up to date, the SPI has been applied to the climate change analysis, not only for separated present and future
climate models’ runs, but also for a continuous precipitation time series of historical and future climate sim-
ulations, although temperature was not an input parameter in the SPI (e.g., Grillakis et al., 2011; Wang et al.,
2011). In most cases, the SPI values were computed separately in present and future climates on each CDF
basis or from the continuous precipitation between present to future climates. The SPI in future period has
not been computed on the basis of present period CDF in both cases. Therefore, it was difficult to interpret
the meteorological drought from the SPI without the present climate basis. In addition, this problem was also
addressed in the other standardized indices, even if they were suitable to climate change issues.

This study proposes a comparative SPI (cSPI) approach to overcome this problem. Using the cSPI, we assessed
the meteorological drought in future climate on the basis of present climate in the Angat dam catchment in the
Pampanga River basin, the Philippines. Most of municipal water demand requirements for the Metro Manila
is supplied from the Angat dam, which has a total water storage capacity of 988×106 m3 and an upstream
catchment area of about 546 km2. Refer to Gusyev et al. (2015a) in more details of the basin.

2 DATA AND METHODOLOGY

This study was based on general circulation model (GCM) data separated into two groups of present and future
climate projections. One was the time slice simulations under different boundary and initial conditions using
MRI-AGCM3.2S with 20-km grid (Mizuta et al., 2012). An AMIP-type run using the observed boundary
conditions was treated as a present climate, labeled as “p1”. For future climates under the RCP8.5 scenario,
Mizuta et al. (2014) prepared 4 different sea surface temperature (SST) distributions. The future climate
projections with the distributions of the cluster 1, 2, 3, and total, described in Mizuta et al. (2014), were
labeled as “f1” to “f4”, respectively. The other was the historical and RCP8.5 experiments using 13 of the
higher-resolution coupled GCMs (CGCMs) in CMIP5 (Taylor et al., 2012). The CGCMs as ACCESS1.0,
ACCESS1.3, CCSM4, CESM1(BGC), CMCC-CMS, CMCC-CM, CNRM-CM5, CSIRO-Mk3.6.0, MIROC5,
MPI-ESM-MR, MPI-ESM-LR, MRI-CGCM3, and BCC-CSM1.1(m), were labeled as “m1” to “m13”. Based
on the 25 years of MRI-AGCM3.2S runs, the present period was 1979 to 2003, and the future one was 2075
to 2099 in this study.

The gridded daily rain gauges dataset in Asia, APHRODITE V1101 (Yatagai et al., 2012), was used as a refer-
ence observation. All of the projected daily precipitation datasets were bias-corrected using a non-parametric
method divided into 12 months and extremes (Inomata et al., 2011) after the bilinear interpolation from the
GCMs to the observation grid system. Then, the bias-corrected daily precipitation was aggregated into monthly
totals at each grid, and averaged over the Angat dam catchment in the Pampanga River basin. The monthly
precipitation in m-th month (1 ≤ m ≤ 12) in a given year was aggregated at S-month timescale of the SPI
(e.g., usually 1-, 3-, 6-, 9- and 12-month).

From the precipitation data, we derive the CDF of the Gamma distribution and the corresponding shape and
scale parameters, α and β, with the maximum likelihood method as:

G(x) =
1

βαΓ(α)

∫ x

0

xα−1e−x/β dx , where α =
1

4A

(
1 +

√
1 +

4A

3

)
and β =

x

α
, (1)

where Γ(α) is the ordinary gamma function of α, A = lnx −
∑

ln x
n , x =

∑
x
n , and n is the number of the

values of x in the period. Substituting the aggregated precipitation for x, we can estimate a pair of the Gamma
distribution parameters and the CDF in equation (1) of a given m-th month at S-month timescale. The CDF is
transformed into a standardized normal distribution as the SPI of a given m-th month at S-month timescale, if
the precipitation dataset does not contain any zero values. The above procedures are described in the previous
studies (e.g., Edwards and McKee, 1997).
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The precipitation dataset may practically contain zero values, even if the Gamma distribution is undefined for
zero precipitation. To avoid this problem, many of the SPI studies modified the CDF as:

H(x) = q + (1− q)G(x) , (2)

where q is the probability of zero precipitation, which can be handled in two ways as introduced by Loukas
and Vasiliades (2004). In this study, we substituted the zero precipitation with a small amount of precipitation,
such as 1 mm, mentioned as quite “naı̈ve” procedure in Loukas and Vasiliades (2004).

3 SPI CLIMATE CHANGE ASSESSMENT
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Figure 1. Time series of SPI12p of p1 run of MRI-
AGCM3.2S (a), and variability ranges of SPI12p of
present climate rus using (b) MRI-AGCM3.2S and (c)
13 CGCMs in CMIP5. The cross and middle bar of
wide box show the mean and median for each run.

As an example of present climate runs, Figure
1a shows the time series of SPI12p at 12-month
timescale of p1 run of MRI-AGCM3.2S. The sub-
scripts “p” and “f” mean present and future climate
projections, hereafter. The SPI value means drier
in the negative case, and wetter in the positive case
on the basis of the climate condition. As the abso-
lute values of SPI is increased, the degrees of dry-
ness and wetness are increased such as “moderately”
(1 ≤ |SPI| < 1.5), “severely” (1.5 ≤ |SPI| < 2),
and “extremely” (|SPI| ≥ 2). The SPI in [−1, 1]
means “normal” condition of the climate. The mod-
erately and severely zones of dryness and wetness
were shaded with light (yellow and sky blue) and
dark (orange and cyan) colors in the figures, re-
spectively. Note that the timing of the dryness and
wetness in the present climate simulations does not
conform to that in the observation, even if the bias-
corrected precipitation of AMIP-type runs with the super-high-resolution GCMs, because of the climate pro-
jections without any data assimilations.
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Figure 2. Same as Figure 1, but for future climates.

Figures 1b and 1c show the variability ranges
of SPI12p with some procedures for the present
climate projections of MRI-AGCM3.2S and 13
CGCMs in CMIP5. Hereafter, a white cross mark
means the SPI average during 25 years, and a white
error bar shows the range of±1σ for each run. Since
the SPI is based on a standardized normal distribu-
tion, the average and standard deviation of the SPI
values are zero and one, respectively. Then, five hor-
izontal bars of wide and narrow boxes indicates the
6.68th, 15.87th, 50th, 84.13th and 93.32th percentile
of the actual SPI12p from lower to higher for each
run. These percentile values are the cumulative prob-

abilities of −1.5σ, −1σ, median, 1σ, and 1.5σ of a standardized normal distribution, respectively. The both

Table 1. Mean annual precipitation averaged in the Angat dam catchment of (a) APHRODITE, (b) MRI-
AGCM3.2S, 1 present and 4 future climate projections, and (c) CMIP5 models, which have 13 pairs of present
(p) and future (f) climate projections. Unit is mm/year.

(a) o (observed)
APHRODITE 2331

(b) p1 f1 f2 f3 f4
MRI-AGCM3.2S 2368 2249 2385 2432 2408

(c) m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13
p 2344 2353 2345 2352 2348 2340 2349 2354 2376 2338 2349 2343 2351
f 2108 2651 2612 2766 2475 2671 2742 2505 2254 2519 2516 2580 2662
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ends of wide box were almost similar to those of error bar, and the median bar was nearby the cross of the
average for each run. These small differences within the normal range could be decreased as the number of
years in the sample increased. The end of narrow box was not fit to ±1.5 of the SPI and asymmetric between
dry and wet sides in many runs. This indicates the actual SPI values have a certain skewness.

Figure 2 shows the variability ranges in the future climate projections. They look similar to those in the
present climate cases in Figure 1, except for the out of the normal range. Actually, mean annual precipitation
in the Angat dam catchment was increased in most of the future climate projections, as shown in Table 1. In
spite of the increased mean precipitation, the change of the SPI values looks quite small between the present
and future climate projections, as shown in Figures 1 and 2. As result, we conclude that the current SPI
approach cannot represent the severity and probability changes of extreme events due to climate change by a
simple comparison between SPIp and SPIf . Therefore, a new approach is needed to evaluate climate change
impacts with standardized indices.

4 SPI LIMITATION IN CLIMATE CHANGE ASSESSMENT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0 1000 2000 3000

Pf

(c) (d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−4 −3 −2 −1 0 1 2 3 4

SPIf

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

0 1000 2000 3000

Pp

(a) (b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−4 −3 −2 −1 0 1 2 3 4

SPIp

Figure 3. Relationship among (a) CDF of present cli-
mate precipitation, (b) SPI of present climate, (c) CDF
of future climate precipitation, and (d) SPI of future
climate.

The limitation of SPI climate change approach is
illustrated in Figure 3. In Figure 3, we demon-
strate the CDF and SPI values for 12th month at
12-month timescale obtained with MRI-AGCM3.2S
runs for present and future climates. Figures 3a and
3b show the CDF and SPIp of the MRI-AGCM3.2S
present climate projection p1 run, respectively. For
the future climate projection, Figures 3c and 3d show
the same month and timescale CDF and SPIf . In
both Figures 3b and 3d, the moderately and severely
dry/wet zones of the SPI are shaded vertically and
horizontally with the same colors as in Figures 1 and
2 and are connected with the corresponding cumula-
tive probabilities in Figures 3a and 3c.

Many climate change SPI studies (e.g., Grillakis
et al., 2011; Wang et al., 2011) compare the degrees
of severity and probability of drought cases defined
by the same SPI threshold between present and fu-
ture climates. However, the same present and future
SPI threshold has different associated precipitation
in the CDF s. For example, the present drought de-
fined with SPI ≤ −1 has annual precipitation less
than 2100 mm in Figure 3a and is less than 1860 mm
for the future climate in Figure 3c. As a result, it is
more valuable to assess changes of the probability and the degrees of severity in future climate projections on
the basis of the corresponding present climate condition. This approach is demonstrated by dashed lines in
Figure 3. The dashed lines are connected from SPIf in Figure 3d to SPIp in Figure 3b via the CDFs in Figures
3c and 3a. From the dashed lines, the annual precipitation of about 2200 mm is now classified as SPIf = 0
(Figures 3c and 3d) and as SPIp = −0.5 (Figures 3a and 3b). Therefore, the drier side of SPIf ≤ −1 in the
future climate is classified as extremely drought of SPIp ≤ −2 on the present climate basis. The moderately
and severely wet zones, 1 ≤ SPIf < 2 of the future climate are extended to 1 ≤ SPIp < 2.5 on the present
climate basis.

5 COMPARATIVE SPI APPROACH

To address this issue, we propose a cSPI approach for the climate change assessment. In our approach, we
estimate future climate SPI by substituting precipitation of a future climate as a target dataset for x in the
present climate CDF in equation (1). Both the present and future climate CDFs have the same parameters
in equation (1) derived from a present climate condition dataset. The resulted SPI is called a cSPI, cSPIf,p,
where the former and the latter subscripts indicate target and reference datasets, respectively. If the same input
datasets are used for both CDFs, the cSPI equals to the traditional SPI, such as cSPIp,p = SPIp.

The cSPI approach is illustrated in Figure 4. Figure 4a shows the time series of cSPI12f,p of f1 run on the
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basis of p1 run of MRI-AGCM3.2S. The degrees of severity, probability and duration of dry and wet conditions
are intuitively understandable in the cSPI values, compared to the SPI values in Figure 2a.
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Figure 4. Time series of cSPI12f,p of f1 run of
MRI-AGCM3.2S (a) on the basis of each correspond-
ing present climate run in Figure 1. The variability
ranges of cSPI12f,p of future climate runs using (b)
MRI-AGCM3.2S and (c) 13 CGCMs in CMIP5.

Figures 4b and 4c show the variability ranges of
cSPI12f,p of the future climate projections of MRI-
AGCM3.2S and 13 CGCMs in CMIP5, on the basis
of the corresponding present climate projections. As
opposed to the traditional SPI in Figures 2b and 2c,
the mean and median of each run was shifted from
zero, due to the differences of mean precipitation be-
tween the present and future climates (Table 1). In
Figure 4, a few climate change runs indicate drier
average of cSPI12f,p in future climate, while the
majority of future projections show wetter future av-
erages. Although the SST ensemble average from f1
to f4 runs of the mean cSPI12f,p was almost zero
in MRI-AGCM3.2S, the model ensemble average of
that was about 0.55 in CMIP5.

In addition to the mean cSPI12f,p, the changes of
the variability ranges are important to assess the me-
teorological drought and flood conditions, as shown
by error bars and boxes in Figures 4b and 4c. In
Figure 4b, the standard deviations of cSPI12f,p in-
creased in all MRI-AGCM3.2S runs and the proba-
bilities of drier and wetter conditions also increased in MRI-AGCM3.2S RCP8.5 experiments. This is due to
the fact that the lower and higher ends of error bars reached to the threshold of−1 and 1, respectively. In Figure
4c, the contributions of the standard deviation change of cSPIf,p was smaller compared to MRI-AGCM3.2S
runs while the range of cSPI12f,p means is much larger in CMIP5 models. Although the SST ensemble mean
of the standard deviation of cSPI12f,p was about 1.4 in MRI-AGCM3.2S, the model ensemble mean of the
standard deviation of cSPI12f,p was nearly equal to 1 in CMIP5.
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Figure 5. Variability ranges of (a) SPI12 of the obser-
vation, and cSPI12p,o of present climate runs using
(b) MRI-AGCM3.2S and (c) 13 CGCMs in CMIP5 on
the basis of the observation.

Depending on the combination of target and refer-
ence datasets, the concept of the cSPI approach is
versatile and is useful for many applications besides
the comparison between present and future climate
projections. For example, we can utilize cSPI to esti-
mate the performance of present climate projections
on the basis of the observation dataset, as shown in
Figure 5. Compared to SPI12o of the observation
in Figure 5a, where the subscript “o” means the ob-
servation, all of the present climate projections were
well bias-corrected in the average base, since the

mean cSPI12p,o was nearly equal to zero for each model in Figures 5b and 5c. The standard deviation
of cSPI12p,o smaller than 1 indicates smaller interannual variability compared to that of the observation, or
vice versa. Practically, the mean and standard deviation of cSPI12p,o were quite different from those of the
observation before the bias correction (results are not shown). The performance of models and bias correction
methods also can be estimated with the cSPI in the same way.

6 DISCUSSIONS

In the extension to the cSPI, more extremely dry and wet cases, out of [−3, 3] range, were increased since the
mean and median of the cSPI were shifted from zero in many cases. However, the accuracy of the SPI value
out of [−3, 3] was quite low, since the slight difference of cumulative probability in the vicinities of zero and
one caused the huge difference of the SPI value, as shown in the CDFs in Figure 3. It was mentioned that the
SPI were limited to the range [−3, 3] to ensure reasonableness in Stagge et al. (2015).

In the vicinity of zero in cumulative probability, the zero-precipitation issue was more significant in the cSPI
than the traditional SPI, because of different conditions between target and reference datasets. The two proce-
dures in Loukas and Vasiliades (2004) were more helpful to avoid the problem partly than the traditional way
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of the CDF modification in equation (2). Even if the mentioned procedure is used, the case of cSPIf,p � −3
might occur. On the other hand, the problem was more serious in the vicinity of one in cumulative probability.
Because of the increased precipitable water due to global warming, the case of cSPIf,p � 3 might occur more
frequently in future climate. When there is no solution of such problems, we should analyze the probability
change of cSPIf,p ≥ 3 to estimate wet extremes, but it might be hard to assess the severity of the extremes
quantitatively. Then, the accuracy problem of extremes might affect the mean and standard deviation of the
cSPI. It is more robust to analyze the median and percentile values, if the number of the sample years is large
enough. Thus, we displayed not only the mean and standard deviation but also the median and percentile
values of the cSPI in this study.

In spite of such limitations, we believe that the cSPI is versatile and valuable to analyze precipitation charac-
teristics in target dataset on the basis of reference dataset, as depending on comparative combinations of target
and reference datasets. For example, the cSPI of combination of present climate simulation and observation
could estimate the model performance, as mentioned in Section 5. When a certain period in an ongoing long-
term observation is defined as a reference, the meteorological drought and flood could be monitored using the
cSPI on the fixed basis of the historical reference, without recalculation through the whole period when the
newest precipitation is added. For these cases, the cSPI is very useful because the temperature change is not
so large within the period treated as present climate.

7 CONCLUSIONS

This paper demonstrated a new concept of the comparative SPI (cSPI) to assess the meteorological hazards
of droughts and floods under climate change at the Angat dam catchment, the Pampanga River basin, the
Philippines. Using the cSPI at 12-month timescale, we estimated the meteorological drought and flood with
bias-corrected precipitation dataset in future climate projections under the RCP8.5 emission scenario, on the
basis of the corresponding present climate projections of MRI-AGCM3.2S and higher-resolution CGCMs in
CMIP5. In SST ensemble runs of MRI-AGCM3.2S, the interannual variability was significantly increased,
while the change of the mean of cSPI12f,p depended on the SST distributions. Both meteorological drought
and flood probabilities increased in SST ensemble runs under the RCP8.5 condition on the basis of an AMIP-
type run of MRI-AGCM3.2S. In the multi-model ensemble in CMIP5, the meteorological drought probability
decreased and heavy wet condition increased, since most of the mean and median of cSPI12f,p significantly
increased. The cSPI results suggested that the increasing heavy wet condition was more likely in future climate
under the RCP8.5 scenario, it would be required to adapt to the heavier wet condition in the Angat dam in the
end of the 21st century. To assess the heavier precipitation in details, the dynamic downscaling of the climate
projections is necessary and valuable, while the model uncertainty of GCMs remains in the our meteorological
drought assessment.

The cSPI utilizes the same equations of the traditional SPI (McKee et al., 1993), but the cSPI is computed by
substituting target datasets in the CDF with parameters derived from a reference dataset. The main advantage
of the cSPI is the possibility of evaluating target datasets using the reference dataset features. When a pair
of present and future climate projections are applied to reference and target datasets, for example, the meteo-
rological droughts and floods in the future climate are compared on the basis of a present climate projection.
Therefore, the cSPI provides us with an alternative point of view when comparing the traditional SPI values
between present and future climate projections. In addition, the comparative standardized index concept of
the cSPI approach is applicable to the other standardized indices, e.g., the standardized streamflow index (SSI;
Vicente-Serrano et al., 2012), the standardized reservoir storage index (SRSI; Gusyev et al., 2015a), and the
standardized precipitation evapotranspiration index (SPEI; Vicente-Serrano et al., 2010), which is obtained
with various probability distributions. The comparative SRSI could characterize the socio-economic drought
more effectively than the traditional indices, and is utilized for the climate change evaluation in Part 3 (Gusyev
et al., 2015b) of this study. When using continuous simulations from present to future climates, such as the
historical and RCP experiments in CMIP5, the comparative standardized indices could be valuable tools to
assess the meteorological, hydrological, and socio-economic droughts in future conditions on the more certain
basis of the present climate, by excluding future climate uncertainties from the reference dataset.
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