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Abstract: The eReefs initiative is developing a series of marine hydrodynamic and biogeochemical 
models that will model and provide forecasts of rainfall and flooding impacts on the Great Barrier Reef. 
These models require real-time predictions and forecasts of riverine inflows and associated concentrations of 
fine sediments, speciated nutrients and carbon at each time step. This paper describes and evaluates one 
possible approach to the generation of water quantity and quality predictions and forecasts by linking 
ensemble streamflow forecasts and empirical Generalised Additive Models (GAMs). Forecasts of daily 
sediment and nutrient concentrations are generated by forcing GAMs with hourly streamflow forecasts that 
have been aggregated to daily totals. The streamflow and water quality forecasts are evaluated for over a 24-
month period concluding in December 2013. The ensemble streamflow forecasts have considerably lower 
errors than simple persistence, which is used as input for the prototype marine models in forecasting mode. 
This suggests that marine modellers can potentially improve their simulations by using the streamflow 
forecasts in place of simple persistence. The ensemble forecasts of nutrient concentrations however display 
large errors, often significantly overestimating the observed values, which may limit their value for marine 
modelling. Errors in sediment and nutrient concentration forecasts, and the forecast uncertainties tend to be 
largest when the GAMS are extrapolating beyond the range of observations used to fit the GAMS model. 
Therefore improvements in the performance of sediment and nutrient concentration forecasts are most likely 
to be realised by fitting the GAMS to a larger set of either modelled or observed data. 
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Figure 1. Forecasts of streamflow, sediment (TSS) and nutrient concentrations for Fitzroy River at The 
Gap issued at 2100 UTC on 02/01/2011, corresponding to a period of high streamflow flow. The 10 day 

forecast period is shaded, while the unshaded area are the predictions made using observed streamflows in 
the 10 days prior to issue of the forecast. The black line is the prediction/forecast median, mid blue lines 

and pale blue lines represent the [0.25,0.75] and [0.05,0.95] predictions/forecasts quantile ranges, 
respectively. Red points represent the observations.  The dashed blue line on the flow plot is the 

maximum streamflow used in fitting the GAMs. 
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1. INTRODUCTION  

The eReefs initiative is developing a series of marine hydrodynamic and biogeochemical models that are 
intended to be used in near-real time or in forecasting mode (i.e. predicting conditions a few days ahead). 
These marine models require riverine inflows and associated concentrations of fine sediments, speciated 
nutrients and carbon at each time step as boundary conditions. For forecasting and near-real time 
applications, the use of monitoring data is not possible and a combination of models will be required to 
produce input series of streamflow and associated sediments and nutrients.  

One possible combination of models is a semi-distributed hydrological model to simulate streamflows 
coupled with a set of generalised additive models (GAMs) to predict water quality constituents.  Such a 
system would provide providing on-the-fly modelling and forecasting capability. The catchment forecasting 
system used here generates forecasts of water quantity and concentrations of nutrients and sediments using a 
two-step process. Firstly, ensemble forecasts of streamflow volumes are produced using the System for 
Continuous Hydrological Ensemble Forecasting [SCHEF; Bennett et al., 2014], which forms the basis of the 
Bureau of Meteorology’s current deterministic short-term streamflow forecasting service. A statistical model 
(specifically, a GAM) is then used to relate observed and forecast streamflows to concentrations of nutrients 
and sediments [Robson and Dourdet, 2015].  

The aim of this paper is to describe and assess the retrospective performance of a prototype catchment 
forecasting model for the Fitzroy River generating predictions of water volumes, nutrient and sediment 
concentrations required by marine forecasting models. The first section introduces the approach to 
streamflow modelling and constituents modelling, followed by results of the flood forecasting from SCHEF 
and finally the estimations of nutrient and sediment concentrations using the GAMs and flood forecasts. 

2. MODEL COMPONENTS 

2.1. Data 

Rainfall, potential evapotranspiration and streamflow observations are required for calibrating and applying 
models for forecasting. Hourly rainfall data for rain gauges within the Fitzroy basin were provided by the 
Bureau of Meteorology for the period 1/1/2007 until 20/05/2013. These data are from operational databases 
and therefore we apply a quality control algorithm to remove implausibly large observations and incorrectly 
recorded zero observations. To generate an extended record of hourly rainfall data to support adequate 
warming up of the hydrological models, we also extract daily rainfall from the Australian Water Availability 
Project [Raupach et al., 2008] for the gauge locations and disaggregate these data to hourly time steps using 
simple averaging. Rainfall for model subareas are calculated from rainfall observations using inverse-
distance-squared-weighing based on the distance between rainfall gauges and catchment subarea centroids. 
Potential evaporation (PE) is taken from the monthly gridded Australian Water Availability Project (AWAP) 
dataset [Raupach et al., 2008] by disaggregating to daily values. The disaggregation assumes the monthly 
mean PE occurs at the middle of the month, and values for other days are obtained by linear interpolation 
between those values.Hourly streamflow observations are from the Queensland Department of Natural 
Resources and Mines online water monitoring portal and Bureau of Meteorology operational databases.  

To ensure the forecasts were independent of any hydrological and error-correction model fitting, for the 
Fitzroy basin we calibrated the model over the period 01/01/2007 – 30/08/2010. To reduce the influence of 
the initial values of the state variables, the model was warmed up for a period 5 years using disaggregated 
AWAP rainfall data. To understand the performance of the hydrological and error models for an independent 
period, we validated for the period 31/08/2010 to 20/05/2013.  

2.2. Hydrological modelling and forecasting 

SCHEF uses a hydrological model to convert precipitation to runoff, and a nonlinear Muskingum channel 
routing algorithm to route the streamflow through a stream network. At each gauge location, an error 
correction model is applied to improve the streamflow forecasts generated by SCHEF. The hydrological 
component of SCHEF is applied in semi-distributed form [Bennett et al., 2014], with runoff calculated using 
GR4H, the hourly time step version of the GR4J model described by Perrin et al [2003]. Hydrological model 
predictions and forecasts are updated using an error correction model based on the dual-pass error correction 
model of Pagano et al [2011]. For a more detailed description of the SCHEF model and its application to 9 
Australian catchments, see Bennett et al [2014].The objective function used in the calibration of the SCHEF 
is a multi-objective function [Bennett et al., 2014] using an average of the well-known Nash Sutcliffe 
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efficiency [NSE, Nash and Sutcliffe, 1970], a log transformed NSE to reduce bias towards large streamflow 
values flows [Legates and McCabe, 1999] and symmetrical measure of overall mean error, first introduced 
by Wang et al. [2011].  

In forecast mode, SCHEF requires rainfall forecasts to generate streamflow predictions. The raw rainfall 
forecasts used in SCHEF are generated by the global instance of the Australian Parallel Suite 1 version of the 
Australian Community Climate and Earth-System Simulator (ACCESS) NWP model [Bureau of 
Meteorology, 2012]. The ACCESS-G NWP forecasts used by SCHEF are available at 3 hour intervals a 
horizontal resolution of ~40 km, and are produced for the next 10 days from the issue time. As the NWP 
model results are susceptible to spin-up issues for the first few hours, an initial period of 9 hours is neglected, 
and therefore SCHEF is able to produce forecasts for up to 9.5 days [Bennett et al., 2014]. NWP rainfall 
forecasts were available for the period 1 January 2011 to 1 January 2013.The rainfall forecasts from the NWP 
model are post processed to correct bias and quantify uncertainty using a Bayesian rainfall post-processor 
[Robertson et al., 2013] which combines a simplified version of the Bayesian joint probability (BJP) 
modelling approach [Wang and Robertson; Wang et al.] with the Schaake shuffle [Clark et al., 2004] . The 
BJP model is then used to generate a 500 member ensemble of unbiased rainfall forecasts for each subarea 
and lead time. As the period in which NWP forecasts are available is short, a leave-one-month-out cross-
validation procedure is used to generate the rainfall forecasts for this study, therefore maximizing the 
available number of forecasts used in the evaluation. The cross validation procedure ensures the post 
processed forecast is independent of observations for that period. 

The forecasts are evaluated for the period 1 January 2011 to 1 January 2013. Three error measures are used to 
estimate the reliability of forecasts: the Nash Sutcliffe efficiency, relative bias and the Continuous Ranked 
Probability Score (CPRS), which measures the error of all ensemble members with respect to observations by 
integrating the squared distance between forecast and observed cumulative distribution functions [Bennett et 
al., 2014].The performance of SCHEF is also compared against a reference forecast, in this case persistence, 
in which the observed streamflow at the forecast issue time is assumed to continue for the duration of the 
forecast. Although it has been demonstrated elsewhere [Bennett et al., 2013; Bennett et al., 2014] that the use 
of persistence as a reference forecast is not a high benchmark for short term flow forecasts, , currently marine 
modellers are using persistence streamflow forecasts and therefore it is a relevant reference forecasts for this 
study. In additional to persistence, the model outputs are also compared to raw NWP forecasts (i.e. before 
post processing) and for “perfect rainfall”, in which the model is forced using observed rainfall which show 
the best possible forecast taking into account the errors in the hydrological model. 

Table 1. Summary of models predicting sediment and nutrient concentrations for the Fitzroy River at The 
Gap 

Model Name Modelled parameter GAM terms 

TSS Total Suspended Solids Log(Flow), s(DF,d=0.9) 

DON Dissolved Organic Nitrogen s(DF,d=0.95), s(Nogoa) 

DOP Dissolved Organic Phosphorus s(DF,d=0.95), s(log(Flow), s(Nogoa) 

FRP Filterable Reactive Phosphorus s(log(Flow), s(Nogoa), s(Isaac) 

NH4 Ammonium s(DF,d=0.95), s(log(Comet+0.0001)) 

NOx Nitrate s(Flow), s(DF,d=0.95) ,s(log(Comet+0.0001)) 

PN Particular Nitrogen s(Flow), s(DF,d=0.95) 

PP Particulate Phosphorus s(Flow), s(DF,d=0.95) 

Flow is the streamflow in the Fitzroy River at The Gap, Nogoa is streamflow in the Nogoa River at Duck Ponds, Isaac is 
streamflow in the Isaac River at Yatton, Comet is streamflow in the Comet River at Comet Weir, DF is discounted 
streamflow at The Gap with a discount factor of d. 

2.3. Water quality modelling and forecasting 

Generalised Additive Models (GAMs) are used to relate streamflows within the Fitzroy Basin to sediment 
and nutrient concentrations. GAMs are generalised regression models which use smoothing functions based 
on various covariates and they require significant less input data and have lower computational costs than 
process-based models and can be a powerful tool for the prediction of sediment loads. The smoothing 
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functions do not have a pre-determined form, but rather aim to capture the main features of the data. The 
basic methodology of the GAMs developed for the Fitzroy as described in detail in Robson and Dourdet 
[2015].  In deriving their model, Robson and Dourdet [2015] considered a large range of possible covariates 
to estimate sediment and nutrient concentrations at The Gap in the Fitzroy River. A variety of different 
covariates were found to provide some predictive power, but the most significant variable was found to be 
flow at different locations, and those variables are used here as shown in Table 1. 

Predictions and forecasts of sediment and nutrient concentrations are generated by conditioning the GAMs on 
the simulated and forecast streamflows produced by the hydrologic and error correction models. The GAMs 
are fitted using daily observations of streamflow and the available measured concentrations of sediment and 
nutrient concentrations. We therefore aggregated hourly streamflow observations and forecasts to daily 
values and generated forecasts of daily sediment and nutrient concentrations. The GAMs can estimate not 
only the expected sediment and nutrient concentrations, but also the prediction uncertainty. We generated 
ensemble predictions and forecasts of sediment and nutrient concentrations by sampling one stochastic 
realisation from the GAM for each streamflow ensemble member using the following equation. 

      (1) 

Where  is the sediment or nutrient concentration for ensemble member i,  is the expected sediment or 
nutrient concentration from the GAM generated using streamflow predictors from ensemble member i,  

is a sample from ,where  is the standard error of the expected sediment or nutrient 
concentration, and 
characterises the 
uncertainty in the 
expected sediment 
or nutrient 
concentration.  
is a sample from 

,where 
 is the standard 

deviation of the 
model residual 
errors, and 
characterises the 
residual error of 
the model (pers. 
comm. Simon 
Wood, Professor 
Statistics 
University of Bath, 
author of GAM R 
package). Only 13 
water quality 
observations are 
available for the 
forecast evaluation period. This limits the ability to produce a robust, quantitative assessment of the 
performance of the sediment and nutrient concentration forecasts. We therefore assess the forecast 
performance using visual comparisons between observed and forecast sediment and nutrient concentrations. 

3. RESULTS 

The Fitzroy model using SCHEF was calibrated at 39 gauging stations throughout the catchment with results 
at The Gap shown in Figure 2. In general, the performance of the model is satisfactory at most stations with 
NSE > 0.7 for the majority of the catchments and a similar performance between the calibration and 
validation periods. However, for several catchments the performance during the calibration period is rather 
poor but the performance during validation is much better. This is mainly due to the increase in availability 
of hourly rainfall from the calibration to the validation period as more hourly gauges are available. In terms 
of bias, there is a larger variability for both the validation and calibration period without obvious correlation 
as the NSE. Across most gauges, the error correction (adjusted results) significantly improves the calibration 
and validation results, with the model being able to predict the timing and magnitude of the peak reasonably 

 Figure 2. Calibration and validation results for gauge 130005A located at The Gap; 
A: hydrographs for both calibration and validation periods including raw 

(”simulated”) and error corrected (“adjusted”) model results; B-E: two largest events 
for calibration (B, C) and validation (D, E); F: location of gauge. 
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well at most locations. An example of the post processed rainfall and streamflow forecasts for all lead times 
up to 9 days for the Fitzroy River Catchment at The Gap using SCHEF are shown in Figure 3. The 
streamflow forecast from the SCHEF performs well, with the observations contained within the [0.75, 0.25] 
interval for most of 
forecast with the 
exception of the 
period around 3 days 
lead time. In 
particular, the model 
correctly predicts the 
magnitude of the peak 
flow with a lead time 
of 7 days; however the 
timing of the peak 
flow is offset by 24 
hours.  

An estimate of the 
accuracy of the 
streamflow forecasts 
generated using 
SCHEF is shown in 
Figure 4 using the 
CRPS score, and it is 
clear that forecasts 
using raw and post 
processed rainfall 
showing better CPRS 
scores than simple 
persistence, with 
similar improvement 
for NSE and bias (not 
shown). Although the 
results for the Fitzroy 
River at Gap shown in 
Figure 4 shown very little difference CPRS scores between forecasts using raw and post-processed NWP 
rainfall, results for other locations in the catchment show locations where the use of post-processed NWP 
rainfall results in significant better results for lead times > 3 days, and for bias in particular, as already shown 
in other studies [Bennett et al., 2014]. This difference in performance may be due do different causes 
including the high frequency of near zero rainfall and streamflow in headwaters and errors in observed 
rainfall.  

Figure 1 present forecasts, and predictions for the preceding 10 days, for a set of forecasts issued during a 
period of high flow, when the GAMs are extrapolating beyond the range of streamflows data used to train the 
model. Total Phosphorus (TP) and Total Nitrogen (TN) concentrations tend to display an inverse relationship 
with streamflow with relatively lower flows tending to be associated with higher concentrations. This 
apparent inverse relationship will primarily arise due to a lagged response to streamflow dominated by the 
discounted streamflow predictors.  Filterable reactive phosphorus (FRP) concentrations on the other hand 
tend to be positively correlated with streamflows.  Total suspended solids (TSS) concentration predictions 
and forecasts display a weak inverse relationship with streamflow and have large prediction uncertainties. 
During low flow periods (not shown) nutrient and sediment concentrations tend to be relatively consistent 
with time. 

Observations are plotted on the forecasts as red points. In some instances, the observations lie within the 
plotted prediction uncertainty intervals, particularly for the high flow forecast depicted in Figure 1.  However 
for the majority of nutrient concentration forecasts, the observations lie well outside the plotted prediction 
uncertainty intervals. This suggests that the out-of-sample mean predictions contain significant errors and the 
uncertainty estimates produced by the GAMs may be under-dispersed. However, there are insufficient 
observations available to provide conclusive evidence. Errors in the mean prediction and uncertainty 
estimates may potentially arise from model over-fitting or changes in catchment conditions which may 

 

Figure 4. CPRS for different reference forecasts calculated at each lead time 
for gauge 130005A located at the Fitzroy River at the Gap. Results shown 
are: hydrological model forced with perfect (observed) rainfall forecasts 
(purple); hydrological model forced with post-processed NWP rainfall 

forecasts (blue); hydrological model forced with raw NWP rainfall forecasts 
(red); and persistence (green).  

Figure 3. Example forecast generated by SCHEF for at the Fitzroy River at the 
Gap issued at 21:00 on 22 February March 2013. The top panel shows time series 
of post-processed ACCESS-G rainfall forecast for all lead times, and the bottom 

panel show ensemble streamflow forecasts and observations. Red lines are 
observations, blue lines are forecast using the NWP model rainfall, while the 
black lines show the ensemble mean. The light and dark grey shades show the 

[0.95, 0.05] and [0.75, 0.25] prediction intervals respectively.  
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invalidate the fitted model [Robson and Dourdet, 2015]. The forecasting period was generally wetter than the 
model training period, and statistical modelling approaches are not suited to this kind of extrapolation. 

Forecasts of sediment concentrations appear to have smaller errors than for nutrient concentrations. However, 
where the GAMs are extrapolating the prediction uncertainty intervals are much larger than for the nutrient 
concentrations. There are many instances where the median forecast TSS concentration is equal to zero, 
while there are no instances of the observed TSS concentrations is zero. This artefact may arise due to the 
assumption that model residuals are normally distributed and suggests that further investigation into the 
residual error distribution may be required.  

4. CONCLUSIONS AND RECOMMENDATIONS 

The eReefs initiative is developing a series of marine hydrodynamic and biogeochemical models requiring 
real-time predictions and forecasts of riverine inflows and associated concentrations of fine sediments, 
speciated nutrients and carbon at each time step. This paper describes and evaluates one possible approach to 
the generation of water quantity and quality forecasts. The approach generates ensemble streamflow forecasts 
by integrating semi-distributed hydrological modelling, recent rainfall and streamflow observations, 
numerical weather predictions and rainfall and streamflow post-processing methods. Generalised Additive 
Models are developed to relate concurrent and lagged daily streamflow observations to daily sediment and 
nutrient concentrations. GAMs are established for Total Suspended Solids, Dissolved Organic Nitrogen, 
Dissolved Organic Phosphorus, Filterable Reactive Phosphorus, Ammonium, Nitrate, Particular Nitrogen and 
Particulate Phosphorus concentrations. Forecasts of daily sediment and nutrient concentrations are generated 
by forcing statistical GAMs with daily streamflow forecasts that are produced by aggregating the hourly 
streamflow forecasts. 

The streamflow and water quality forecasts are evaluated for over a 24-month period concluding in 
December 2013. The ensemble streamflow forecasts have considerably lower errors than simple persistence, 
which is the current input used by marine modellers. This suggests that marine modellers can potentially 
improve their simulations by using the streamflow forecasts in place of simple persistence. The ensemble 
forecasts of sediment and nutrient concentrations all display errors, often overestimating the observed values. 
Errors in nutrient concentration forecasts tend to be larger than those for sediment concentration forecasts. 
The largest forecast errors tend to occur when the GAMs are extrapolating beyond the range of streamflows 
data used to train the 
model. 

Estimates of the 
uncertainty of the 
streamflow forecasts tend 
to be under dispersed, 
particularly at short lead 
times. The reason for this 
limitation is related to 
uncertainties in the 
hydrological modelling 
not being described by 
the current error 
correction model. This 
short-coming is currently 
being addressed by 
WIRADA research. The 
poor performance of the 
forecasts of nutrient and 
sediment concentrations 
may be related to several 
factors, including: limited 
number of observations 
available to fit the 
models (particularly at 
higher flows), model 
over fitting and changes 

 

Figure 5. CPRS for different reference forecasts calculated at each lead time 
for gauge 130005A located at the Fitzroy River at the Gap. Results shown 
are: hydrological model forced with perfect (observed) rainfall forecasts 
(purple); hydrological model forced with post-processed NWP rainfall 

forecasts (blue); hydrological model forced with raw NWP rainfall forecasts 
(red); and persistence (green).  
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in the catchment processes that influence the nutrient and sediment generation. 

Limitations in the available of observations can potentially be overcome by increased frequency of nutrient 
and sediment sampling. Work currently being undertaken as a part of eReefs is collecting water quality data 
at very high temporal resolutions. High frequency turbidity monitoring can be a good proxy for direct 
monitoring of TSS, though this requires the relationship between TSS and turbidity to be established for local 
conditions. These data were not available for the work described in this report, but could potentially lead to 
significant improvements the performance of the GAMs and water quality forecasts. Future work should 
investigate how best to harness the high temporal resolution water quality observations for forecasting 
applications.  

An alternative strategy to improve the performance of the water quality forecasts may be to fit the GAMs to 
the output of a process-based model, such as the Source catchment models held by the Queensland 
Department of Natural Resources and Mines. While this strategy would increase the range of flow conditions 
over which the GAMs could be fitted and would ensure that near-real time and forecasting inputs to the 
marine model were consistent with inputs to be used in hindcasting, it presupposes that the output of the 
process-based models adequately describe the observations well at daily or sub-daily time scales.  
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