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Abstract: Real-time streamflow forecasts are often produced at hourly and shorter time steps. To calibrate 
the hydrological models used to generate forecasts, archives of streamflow and rainfall observations are 
essential. The collection and archiving of sub-daily rain gauge observations is typically automated. Errors in 
rainfall observations can arise for many reasons and may manifest as anomalously high or low values for a 
single observation or longer periods of time. Quality control of sub-daily rainfall is onerous because of the 
large volume of data, and sub-daily rainfall data are frequently not quality-controlled when the data are 
archived in real-time. Errors in rainfall observations used to calibrate hydrological models can lead to poor out-
of-sample model simulations and contribute to poor streamflow forecasts.  

In this paper we describe a simple automated strategy for quality controlling archives of rain gauge 
observations. The strategy compares running totals of rain gauge observations with a reference rainfall data 
set. Where the differences between the observations and the reference dataset exceed a threshold, rain gauge 
observations are considered to be of poor quality and set to a missing value. The sensitivity of the quality 
control can be manipulated by adjusting the period over which the running totals are computed, and the 
definition of the difference threshold. 

We apply the quality control strategy to hourly rain gauge observations from five catchments across Australia. 
For these applications we use the daily Australian Water Availability Project rainfall data set as the reference 
and quality control the hourly rain gauge observations at daily time steps. We seek only to remove gross errors 
in the rain gauge observations, where 5-day observed totals are greater than five times the reference or smaller 
than one fifth of the reference. We demonstrate the efficacy of the quality control strategy for hydrological 
models run at an hourly time-step with cross-validation experiments. The calibration and validation 
performance of hydrological simulations forced by the quality-controlled data are vastly superior to those 
forced by the raw rainfall observations. In some instances, improvements in validation Nash-Sutcliffe 
Efficiency values greater than 0.7 are achieved by using the quality-controlled rainfall observations. The 
performance of the hydrological simulations also tends to be more consistent between calibration and 
validation periods when quality-controlled rainfall observations are used. 

The method allows rapid quality-control of large sub-daily rainfall datasets, allowing new streamflow 
forecasting systems to be established quickly. 
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1. INTRODUCTION 

Rainfall data are essential for calibration and real-time application of continuous hydrological models for 
forecasting. Calibration of continuous hydrological models often requires many years of historical rainfall data, 
while real-time forecasting applications require ‘live’ feeds of rainfall data. At daily time steps, archives of 
quality controlled rain gauge observations are well established and operational methods exist to translate these 
observations to gridded surfaces, such as the Australian Water Availability Project (AWAP) gridded data set 
[Jones et al., 2009], from which sub-catchment rainfall can be derived. Flood and short-term streamflow 
forecasting applications, however, require sub-catchment rainfall at a sub-daily (e.g. hourly) time step. Radar-
based gridded rainfall analyses are available for parts of Australia in real-time, however archives of these 
analyses are temporally inconsistent due to the evolution of algorithms used in real-time, and of insufficient 
length to calibrate continuous hydrological models. Therefore, only rain gauge observations currently meet 
both the requirements of having necessary historical archives for hydrological model calibration and data 
available in real time.  

It is critical that rainfall observations used for hydrological modelling and forecasting purposes are as accurate 
as possible [Oudin et al., 2006]. Errors in rainfall observations can result in poor predictions and forecasts for 
independent observations. Many factors may contribute to errors in rainfall observations, including sensor 
recalibration, deterioration and inoperability, incorrect time stamps, changes to the environment surrounding 
the sensor (e.g. tree growth or location change). The resultant observational errors may persist for only a few 
time steps or may influence observations for long periods emerging as trends or step-changes in rainfall time 
series. 

Many different quality control methods have been applied to remove errors from rainfall observations at daily 
and longer time steps, often with different objectives [Allen et al., 1998; Green et al., 2012]. For example some 
quality control methods seek to remove only gross errors, while others seek to generate statistically 
homogenous time series.  However, all methods typically involve comparing observations for one location to 
data for neighboring locations or to a reference data set. In many instances, manual intervention is 
recommended during the quality control process to confirm suspected errors or identify when trends or step-
changes in the data commenced.  Manual intervention may be practically feasible for daily rainfall 
observations.  However, for quality controlling hourly rainfall observations used for streamflow forecasting, 
where there are potentially hundreds of thousands of observations at many locations within a catchment, 
manual intervention in the quality control process becomes impracticable. 

In this paper we describe an automated algorithm for quality controlling hourly rainfall observations prior to 
their use for the development and evaluation of streamflow forecasting models.  We adapt existing methods 
for quality controlling daily rainfall observations and use the AWAP gridded rainfall analysis as a reference 
data set.  We then demonstrate the value of quality controlling rainfall observations for hydrological modelling 
through a series of cross-validation experiments.  

2. METHODS 

2.1. Quality control of rainfall observations 

Our objective for quality controlling rainfall data is to remove spurious observations from the archive of hourly 
observations that are likely to have a significant impact on the quality of streamflow simulations and forecasts.  
In operational forecasting applications it is very difficult to identify or remove long-term trends or step changes 
in data and we do not seek to do so.  Based on preliminary data exploration we identified three types of poor 
quality data that can have significant impacts on estimates of sub-catchment rainfall for hydrological modelling 
purposes: 

• anomalously large values  

• anomalously small values or incorrectly recorded zero values  

• data associated with inappropriate time stamps, commonly caused by the incorrect time zone being 
used 

Due to the large number of rainfall stations used and the total number of observations (up to 200,000 
observations per station) we perform quality control using an algorithm. We base our quality control algorithm 
on double mass plots [Allen et al., 1998] and correlations between observed and reference data.  We also 
generate several other diagnostic plots that facilitate rapid checking to ensure that the quality controlling has 
been successful. 
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Double mass plots are a common tool for diagnosing trends and inconsistencies in rainfall and streamflow data. 
A double mass plot is produced by plotting the cumulative sum of rainfall observations against the cumulative 
sum of a reference set of rainfall observations. If the data are consistent and are affected by the same factors, 
then the plot will be a straight diagonal line. However, where the data are influenced by different trends or 
have inconsistencies the plot will deviate from the diagonal.  

We use double mass plots only to identify gross inconsistencies in station rainfall data. These inconsistencies 
are where the rain gauges recorded anomalously small or large quantities of rainfall relative to the adopted 
reference. The gross inconsistencies are identifiable in double mass plots by horizontal or vertical (or near 
horizontal or vertical) segments.  

No reference sets of rainfall observations at the hourly time steps exist. We therefore apply data quality control 
using double mass plots at daily time steps.  We adopt the AWAP rainfall data set [Jones et al., 2009] as the 
reference for constructing double mass plots. For each rainfall gauge location, we aggregate hourly 
observations to daily totals ensuring observation times are consistent with the AWAP data set.  We compare 
these observed daily totals to AWAP daily rainfall for the co-located grid cell. We generate double-mass plots 
for each location separately and visually inspect the plots to understand the nature of the rainfall observations 
relative to the AWAP reference. In the production and analysis of the double-mass plots, periods where rain 
gauge observations are missing are removed from both the observed and reference time series.  

We use an algorithm to identify segments that suggest inconsistencies exist between the observed and reference 
(AWAP) data, as follows:  

1. For each observed daily total at time t  we calculate the slope, s , of the double-mass plot for a window 
from time t n−  to t n+  (i.e., a window width of 2 1n +  time steps), where n  is a parameter. 

2. We flag observations where s m> or where 
1s
m

<  as inconsistent data, where m  is a parameter. 

3. Periods of inconsistent data in the daily time series are replaced with a missing data value in the hourly 
rain gauge time series.   

Effectively this algorithm identifies observations as inconsistent when the running 2 1n + -day total observed 
rainfall is m  times larger or smaller than the corresponding 2 1n + -day total AWAP rainfall. 

For the window size, we adopt a value of 2n =  (i.e., a 5-day window) through trial-and-error.  In some 
instances, a shorter window appeared to eliminate too many seemingly good observations, while a longer 
window did not remove all obvious gross errors. For the slope parameter, we adopt 10m = , again based on 
trial and error. 

The correlation between the daily rain gauge observations and AWAP rainfall is also used for quality control. 
Where the correlation is less than 0.4 (a value also derived from empirical trial and error), all data for the rain 
gauge are set to missing.  Subsequent investigation found that this problem may often have been caused by an 
incorrect time stamp for all or some of the record, for example the data were incorrectly marked as local time 
when they should actually have been labelled UTC, or vice versa. However, as it was not possible to 
definitively identify the correct timestamp, these data were also replaced by missing values. 

We apply the above analysis separately to each rainfall station. To validate our quality control method, we use 
the common (manual) technique of visually inspecting plots of cumulative rainfall against time for all stations 
and the entire period of record on a single plot.  We also compare double mass plots of the raw and quality 
controlled data to double check that our algorithm removes gross errors. 

2.2. Impact of rainfall data quality on performance of hydrological models 

To understand the impact of quality controlling rainfall observations on the performance of hydrological model 
we perform a series of cross-validation experiments.  Semi-distributed hydrological models used for hourly 
streamflow forecasting applications [Bennett et al., 2014] are used for these cross-validation experiments.  
Hourly sub-catchment rainfall is derived from rain gauge observations using inverse-distance-squared 
weighting.  (We note that more sophisticated algorithms that take into account, e.g., elevation, may result in 
better estimates of sub-catchment rainfall, but inverse-distance-squared weighting is sufficient for this study.) 
Sub-catchment rainfall is derived using both the raw rain gauge observations and the cleaned data that is quality 
controlled. 

2112



Robertson, Bennett, Wang, Quality controlling hourly rainfall observations 

Hydrological model parameters are calibrated using the shuffled complex evolution algorithm to maximize an 
objective function that is a weighted average of the Nash-Sutcliffe efficiency of untransformed and log-
transformed streamflow and a measure of bias [Bennett et al., 2014].  A 3-fold cross-validation approach is 
used to assess the performance of the hydrological model.  Practical application of the cross-validation 
approach involves running the hydrological model for the entire record during calibration with the observed 
streamflow for the validation period of interest omitted in the computation of the objective function. 

In this study we assess the performance of the hydrological model using the Nash-Sutcliffe efficiency of both 
untransformed and log-transformed streamflows and also using flow-duration curves.  

3. RESULTS 

The quality control algorithm was applied to a range of catchments across Australia with contrasting 
hydrological and climatic conditions. In some instances, the observed rainfall record contained few gross errors 
and therefore application of the quality control algorithm had an inconsequential impact on the observed 
rainfall time series and streamflow simulations.  Here we present results for the catchment of the Murray River 
at Biggara streamflow gauge, located on the border between Victoria and New South Wales, where quality 
control of rainfall observations was found to be important.   

Figure 1 shows the location of the rain gauge network, sub-catchment boundaries used in hydrological 
modelling and the catchment of the Murray River at Biggara streamflow gauge.  For this analysis, we use 
available rainfall and streamflow records for the period 1990 – 2012. 

 

Figure 1. Map of the catchment area of the Murray River at Biggara streamflow gauge. 

3.1. Quality controlling rainfall observations 

Figure 2 presents the double-mass plot and cumulative rainfall plotted against time for one station in the 
northern part of the Murray River at Biggara catchment.  The double-mass plot of the raw station rainfall data 
(black line) clearly shows that there are potentially significant data quality issues with the one very long 
horizontal line segment, and multiple other shorter ones.  Closer examination also reveals there are also some 
(near) vertical line segments particularly near the top left hand corner of the plot.  The horizontal line segments 
are related to occasions where the rain gauge recorded zero rainfall, while the reference rainfall recorded non-
zero values. The vertical segments indicate that the recorded station observations are considerably larger than 
corresponding reference rainfall data.  The plot of cumulative rainfall against time indicates that the available 
rainfall time series contains only zero values for the period between 1998 and 2008.   

The red lines in Figure 2 are for cleaned data after application of the quality control algorithm.  The double 
mass plot is a straight diagonal line with no obvious vertical or horizontal segments, indicating the quality 
controlled data contain few gross errors. Not only did the quality control algorithm remove the incorrectly 
recorded zero values, but it also removed many non-zero rain gauge observations that were not consistent with 
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the reference time series.  The net effect of removing the non-zero observations was to reduce the total rainfall 
observed over the period between 1990 and 2012 by approximately 2000 mm, or ~60 mm/year.   

The red line in the plot of cumulative rainfall against time shows that not all the zero values that were recorded 
during the period between 1998 and 2008 were removed by the quality control algorithm.  The zero values that 
are not removed correspond to occasions when the total rainfall for the five days either side is near zero for 
both the observed and reference (AWAP) time series.   

  

Figure 2. Cumulative rainfall gauged at site 572023 in the Northern Murray River catchment plotted against cumulative 
AWAP rainfall (left) and against time (right), before and after quality control is applied. 

3.2. Impact on performance of hydrological models 

Quality controlling the rain gauge observations can lead to substantial improvements in the cross-validation 
performance of hydrological models.  Tables 1 and 2 show that the calibration performance of the models 
calibrated using quality controlled rainfall data are better, and often substantially better, than the performance 
of the model calibrated using the raw rainfall observations.  The improvements in the model calibration 
performance are evident in the NSE of both untransformed and log-transform flow indicating that 
improvements occur for both high and low flows.  Improvements in validation performance also occur, 
although for one period (Period 2) the NSE validation performance declines somewhat.  When improvements 
in the validation performance do occur they are very large, with the NSE increasing from values less than zero 
to levels that are more comparable to the calibration performance.   

The performance of the models calibrated using the quality controlled rainfall data is also much more consistent 
than for models calibrated using the raw rainfall observations.  This improved consistency exists between the 
different cross-validation periods and between calibration and validation results. For hydrological forecast 
evaluation and real-time forecasting applications, consistent model performance is important.  Hydrological 
forecasting applications usually use bias-correction and error updating methods to improve forecast accuracy 
and to ensure that forecasts appear to be a natural extension of observed streamflows.  Consistent hydrological 
model performance between calibration and validation periods means that error models derived are likely to 
perform well for a range of conditions. 

Table 1. Calibration and validation Nash-Sutcliffe efficiency of untransformed flows for Murray at Biggara. 

Cross-
validation 

period 
Calibration 

start* 
Calibration 

end* 
Validation 

start 
Validation 

end 

Calibration NSE Validation NSE 

Raw 
rainfall 

data 

Cleaned 
rainfall 

data 

Raw 
rainfall 

data 

Cleaned 
rainfall 

data 

1 1/02/1992 30/07/2012 1/02/1992 1/12/1998 0.71 0.72 -0.07 0.65 

2 1/02/1992 30/07/2012 1/12/1998 30/09/2005 0.29 0.77 0.77 0.71 

3 1/02/1992 30/07/2012 30/09/2005 30/07/2012 0.42 0.79 -0.33 0.62 

*Streamflow data for the validation period are marked as missing during calibration 
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Table 2. Calibration and validation Nash-Sutcliffe efficiency of log-transformed flows for Murray at Biggara. 

Expt. 

Num. 

Calibration 
start* 

Calibration 
end* 

Validation 
start 

Validation 
end 

Calibration 
NSE(log) 

Validation 
NSE(log) 

Raw 
rainfall 

data 

Cleaned 
rainfall 

data 

Raw 
rainfall 

data 

Cleaned 
rainfall 

data 

1 1/02/1992 30/07/2012 1/02/1992 1/12/1998 0.80 0.84 -0.38 0.80 

2 1/02/1992 30/07/2012 1/12/1998 30/09/2005 0.46 0.86 0.82 0.73 

3 1/02/1992 30/07/2012 30/09/2005 30/07/2012 0.63 0.83 0.44 0.83 

*Streamflow data for the validation period are marked as missing during calibration 

 

Figure 3 presents calibration and validation flow-duration curves for the first cross-validation period.  
Differences between the calibration flow-duration curves of the models calibrated using the raw and quality 
controlled rainfall data are relatively small but tend to be most evident for the highest 5% and the lowest 20% 
of flows. The validation flow-duration curves show much larger differences than the calibration flow-duration 
curves.  In general, the flow-duration curves produced using the quality controlled rainfall data are much closer 
to the observed curve than those produced using the raw rainfall data.  The validation flow-duration curve 
shown in Figure 3 is a typical example where the curve produced using the raw rainfall data is offset from the 
observed curve, suggesting that there is a clear bias in the validation simulations for all exceedance 
probabilities.  As this problem is largely not present in the streamflow simulated using the quality controlled 
rainfall data we conclude that these errors result from inconsistences in the observed rainfall between the 
calibration and validation periods which the quality control algorithm was able to effectively remove.   

 

Figure 3. Calibration and validation flow-duration curves produced using hydrological models forced with raw and 
quality controlled rainfall data for the Murray catchment for the first cross-validation period. 

4. DISCUSSION AND CONCLUSIONS 

In this paper we have described a relatively simple, but robust, algorithm for automated quality control of 
hourly rainfall observations.  The method makes use of now commonly available gridded daily rainfall data 
products. It removes gross errors in rainfall time-series using an adaption of a double-mass plot to ensure 
consistency between five-day running totals of rain gauge observations and a reference rainfall data set.  We 
show that the quality control method effectively removed gross errors in rain gauge observations and that the 
removal of these gross errors can significantly improve the cross-validation performance of hydrological 
models. 
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For this study we adopted the gridded AWAP rainfall analysis product as our reference climate data set.  AWAP 
rainfall is derived from quality controlled daily observations and is available across Australia.  However, even 
where no such gridded rainfall product is available, the method can be, and has been, applied.  In these 
instances, we have constructed a reference data set using the mean rainfall from a neighbouring set of rainfall 
gauges, but it may also be possible to use a global reanalysis such as ERA-Interim 
(http://www.ecmwf.int/en/research/climate-reanalysis/era-interim).  However, using either a global reanalysis 
or average of neighbouring stations as the reference data set can highlight one of the limitations of the approach 
described in this manuscript. 

The thresholds used to flag inconsistent data in this study assume that the slope of the double-mass plot is close 
to one.  In some circumstances the expected slope of a double-mass plot may be different to one, such as when 
taking the average of neighbouring stations that are far away and experience different climates or when using 
gridded products which characterise rainfall at large spatial scales.  In these circumstances, the parameters 
adopted may require adjustment, for example to ensure that (correctly) measured large rainfalls are not 
mistakenly removed from the data set if m is too small. 

There are several ways that the method can be tailored to different applications in addition to adjusting the m  
parameter used to flag inconsistent data.  In our applications, we found that adjusting the n  parameter that 
controls the window size over which the running totals are compared influences the sensitivity of the algorithm. 
Ultimately, n  and m can be adjusted so that the quality control algorithm best suits the purposes of the user. 

The quality control method described in this paper has been applied retrospectively to archives of rainfall data.  
This is highly valuable for the development of forecasting systems and their retrospective evaluation.  
However, real-time quality controlling of rainfall observations is also required for operational forecasting 
applications.  AWAP data are not presently available in real-time, meaning that AWAP cannot be used as a 
reference to quality control rainfall data in real-time.  However, the method has potential to be adapted for real-
time applications, particularly if the average of neighbouring rain gauges is used as a reference data set. 
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