
Modelling the Likelihood of Urban Residential Fires 
Considering Fire History and the Built Environment: A 

Markov Chain Approach 
Rifan Ardiantoa, Prem Chhetria and Simon Dunstallb 

 
a School of Business, IT, and Logistics, RMIT University 

b CSIRO, Clayton, Victoria 
Email: rifan.ardianto@rmit.edu.au 

Abstract: In this paper, we address the complex question of how the occurrence rate of residential 
structure fires in Melbourne city are influenced by built-environment structural forms and/or the recent 
history of fire incident occurred within the neighbouring areas. Numerous studies have used the socio-
demographic and economic characteristics to explain the spatial variability in residential fire occurrence 
rates. There is however less published research that links spatio-temporal variation of residential fire 
occurrences with patterns and changes in the built environment, or which seeks to quantify the spatial effect 
of fire events on the subsequent rate of incidents within the local area.  

We develop a spatio-temporal model of residential fire occurrence based on a range of spatial characteristics 
and past fire occurrences within neighbourhood. These spatial characteristics include the Index of Relative 
Socio-economic Advantage and Disadvantage (IRSAD), residential density (i.e. the relative number of 
dwelling per unit area), percentage of owned dwellings, percentage of privately rented dwellings, percentage 
of publicly rented dwellings, percentage of residents moved in the last five years, and percentage of residents 
moved in last year. The model is fitted to fire incidence data from Melbourne, Australia, gathered over a 10-
year period. Results show that the distribution of residential structure fires across Melbourne is a complex 
pattern and is associated with spatially-varying indicators. The inner suburbs of the Melbourne region are 
more fire prone than others. Those areas have high probability of fire occurrence. This naturally follows not 
only from built environment and socio economic characteristics, but also correlates with recently-located 
residents as the tenure status in those areas. Households that have recently moved into an area, and 
households consisting of temporary residents, have been demonstrated in prior studies to exhibit an elevated 
likelihood of fire occurrence. The analysis also capture that there is a neighbourhood “memory” effect of 
fires, with respect to fire occurrence rates. 

The results contribute to an evidence base which may be useful for emergency planners and fire agencies 
seeking to build appropriate strategies to mitigate fire effects on communities. It also aids in assessing and 
classifying areas in terms of fire occurrence likelihood, and in determining when to circulate fire safety 
information to residents so as to retain preparedness and awareness of fire incidents.  
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1. INTRODUCTION 

The analysis of urban residential fire occurrence is widely researched in recent decades because of the 
availability of disaggregate fire incident data for research. Numerous studies have examined the changes in 
spatio-temporal fire patterns and the associated fire risk. The rate of residential fire in terms of fire incident 
per unit area or a unit population, has been analysed by applying geographical techniques using spatial 
characteristics of urban space (e.g. socioeconomic indicators, structure of family, and dwelling density) as the 
key determinants (Chhetri et al. 2010; CorcoranHiggsBrunsdonWare, et al. 2007). These previous studies 
provide a useful baseline for developing methodological frameworks for the identification of the key drivers 
of fire incident behaviour across different cities: however, their methodological robustness can potentially be 
improved through greater consideration of new factors such as those associated with human learning and 
behaviour.  

Much of the spatial analysis of fire occurrence quantifies the effects of neighbourhood characteristics on fire 
incident behaviour but paid little attention on the effect of past event on the subsequent rate of incidents 
within the local area. It is generally accepted that spatial heterogeneity may represent the existence of spatial 
variability of fire incidence across a large metropolitan area.  This is a consequence of the differences of 
spatial characteristics associated with the structure of the built environment. Thus, there is a spatial 
dependence, meaning fire risk patterns are often spatially correlated.  

From a theoretical perspective, trends in residential fire could be associated with changing urban built 
environment, which is dependent on the environmental conditions and situations (Sufianto & Green 2012; 
Yazhou, Hehe & Baojie 2010). Using geographical information systems (GIS), numerous studies have 
consistently demonstrated the relationships between fire incidents and the situated context within which they 
occur.  For instance, the disadvantaged areas are often at a higher fire risk than those of advantaged areas 
(Chhetri et al. 2010; CorcoranHiggsBrunsdon Ware 2007; Duncanson, Woodward & Reid 2002; Wuschke, 
Clare & Garis 2013). Areas with high building density are also likely to experience a larger number of fires 
than their counterpart (Ceyhan, Ertuğay & Düzgün 2013; FEMA 2008; Jones et al. 2013; Yazhou, Hehe & 
Baojie 2010).  

However, the risk of fire might not only be affected by environmental conditions and situations. It might also 
be related to how residents within a neighbourhood are linked and connected via complex social networks. If 
so, residential fire risk is also possibly related to (favourable and unfavourable) social interaction and 
exchange of information. Corcoran et al. (2011) present fire risk as a multi-scale modelling problem, ranging 
from larger environment to regional and neighbourhood scales through to households and the individual. 
They note that individual behaviour (e.g. careless use or poor supervision of cooking and heating appliances) 
and group behaviour (e.g. households with many children tend to let children playing at home unsupervised) 
can be related to fire risk. In addition, some of the studies referenced here also note that areas with low level 
of socio-economic status and certain family structures such as single-parent families and families with young 
children can have higher relative likelihoods of residential fire.  

People who have strong geographical proximity or emotional connections to fire events will naturally have a 
higher level of information retention about the relevant hazard, yet this also implies that diffusion of 
information about an incident will be impeded by distance in space and in social structure (Jones et al. 2013). 
The intensity of information diffusion is expected to begin to dissipate once a certain distance from the event 
is reached, as awareness of that event thus becomes weaker beyond this distance. This is often referred as 
distance decay effect. If the rate of fires in a neighbourhood is affected by past fire history, this will be in line 
with the Geographical Law (Tobler 1970) that “everything is related to everything else, but near things are 
more related than distant things”. Not only does distance tend to affect how people perceive risk and how 
their behaviour might change, but time is also a key factor because recalling an event becomes harder with 
increased time (but clearly depends upon its scale of impact, e.g., death or injury). Thus, the perception of 
fire risk, thus the preparedness, is also dependent on time. 

If learning and awareness are to be explanatory factors for fire occurrence rates, then behaviour patterns in 
networks of people and the activity spaces, within which they interact, can be considered as influential as 
other factors. As such, the diffusion and retention of information about a fire occurrence will be subject to 
spatial heterogeneity of fire incidents within a given space (Kirschenbaum 2004; Kumagai, Carroll & Cohn 
2004; Parker et al. 2013). The rate and intensity of information flow could be explained through community 
networks. Relationships and social interactions among individuals within a network have played a significant 
role in the recovery from a disaster and natural hazard for individuals and the community. Perception and 
cognition of fire risk information about experienced disasters lead some individuals to alter their risk 
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behaviour by help developing better coping strategies and/or undertake more effective preparation against a 
threat of fire (Olaniran, Rodriguez & Williams ; Workman, Jones & Jochim)). Individuals who are more 
confident but less prepared are more likely to escalate fire risk, and thus are more vulnerable (Kumagai, 
Carroll & Cohn 2004).  

An understanding of the fire likelihood over space and time, and having insights into residents’ information 
perception, retention and behaviour change relating to fire, is potentially important for public safety, for 
emergency services planning and management, and for fire insurance market (Mueller 2015; Penman et al. 
2015; Sufianto & Green 2012; Tooth 2012). Few studies have attempted to model fires as being non-
uniformly distributed events occurring across time and space, even if their occurrence is somewhat 
predictable (Wuschke, Clare & Garis 2013). This paper therefore aims to develop a model to estimate the 
probability of residential fire occurrence by incorporating the spatial dependence of the location of fire 
occurrence and the history of prior fires within a defined neighbourhood. A Markov chain is applied to fire 
incident data with spatial and temporal parameters where it is assumed that fire probability at a location 
depends on the occurrence of the most recent fires. 

This paper is organised as following. In section 2, we describe our approach for assessing fire occurrence 
probability by applying a Markov Chain model. Section 3 describes the result of a case study using a set of 
fire incidents occurring in Melbourne based on the model developed in Section 3. Finally, conclusions of this 
research are drawn in Section 4. 

2. A SPATIO-TEMPORAL MODEL 

In this paper, we use stochastic process combining Poisson regression to estimate the likelihood of fire 
occurrence given recent fire incidents. Consider a set of random variables ሼ ௧ܻ, ݐ ∈ ܶሽ defined on a given 
probability space and indexed by ݐ, for 	ݐ ∈ ܶ. The set of ܶ is often represented as time sequence of the 
process or location of the event, so that the set of  ܶ can be discrete or continuous. The range of ௧ܻ generates 
a state space ܵ which can be also discrete or continuous. A set of  ሼ ௧ܻ, ݐ ∈ ܶሽ  with a discrete state space ܵ is a 
Markov Chain if, for sequence ݐ଴ < ଵݐ < ଶݐ < ⋯ < ݐ < ݐ + 1 ∈ ܶ, and values sequence ݅଴, ݅ଵ,⋯ , ݅ and ݆ ∈ ܵ, 
the following conditional probability holds: ܲ( ௧ܻାଵ = ݆| ௧ܻ଴ = ݅଴, ௧ܻଵ = ݅ଵ,⋯ , ௧ܻ = ݅) = ܲ( ௧ܻାଵ = ݆| ௧ܻ = ݅) =  ௜௝ (1)݌

where ݌௜௝ ≥ 0  for all pairs ݅, ݆	 ∈ ܵ   and ∑ ௜௝݌ = 1௝∈ௌ . The term ݌௜௝  is often called as the transition 
probability. It is a probability that event ݆ occurs at time ݐ  given event ݅  occurs at time ݐ − 1. Hence, a 
discrete stochastic process is practically referred as Markov Chain if the future of the set of ሼ ௧ܻ, ݐ ∈ ܶሽ is 
dependent on its present state. The transition probability in equation (1) can be arranged in matrix, denoted 
by ࡼ, called as the transition probability matrix, ࡼ = ቈ݌ଵଵ ଵଶ݌ ଶଵ݌⋯ ଶଶ݌ ⋯⋮ ⋮ ⋮ ቉ 
In our case, residential fire occurrence can be viewed as a random spatial and temporal process, so that 
residential fire occurrence can be formally defined as a set of random variables ሼ ௧ܻ(ܽ),	 ܽ ∈ ,ܣ ݐ ∈ ܶሽ in a 
given probability space. Consider ܼ௥(ܽ) = ሼܼଵ(ܽ), ܼଶ(ܽ),⋯ ሽ is the ݎ-th zone from area ܽ. ܼଵ(ܽ) is a first 
order zone of ܽ (i.e. a neighbourhood of ܽ). By proceeding the set of ሼ ௧ܻ(ܽ),	 ܽ ∈ ,ܣ ݐ ∈ ܶሽ follows Markov 
assumption, the transition probability is ܲ( ௧ܻାଵ(ܽ) = ݆| ௧ܻ(ܽ) = ݅௔, ௧ܻ(ܼଵ(ܽ)) = ݅, ௧ܻ(ܼଶ(ܽ)) = ݅ଶ,⋯ )= ܲ( ௧ܻାଵ(ܽ) = ݆| ௧ܻ(ܽ) = ݅௔, ௧ܻ(ܼଵ(ܽ)) = ݅) = ܽ	௜௝(ܽ) , for any݌ ∈ ,ܣ ݅, ݆ ∈ ܵ  

(2) 

This is the probability of next ݆ fires at area ܽ given there were ݅௔ fires occurred at area ܽ and ݅ଵ fires at first 
order zone of area ܽ. The states of the chain are the count of fire occurrence, so that the state space may be 
defined in countably-infinite state space, ܵ = ሼ0,1,2,⋯ ሽ. However, since residential fire is a rare event, the 
number of fire may be defined in countably finite state space ܵ = ሼ0,1,2,⋯  is the possible ܯ ሽ, whereܯ,
maximum number of fire throughout certain time interval. 

Further, we assume a range of spatial indicators may provide effects on residential fire densities and so do 
fires occurred within neighbourhood in the last certain period. Consider ൛ ௝ܺ(ܽ), ݆ = 1,⋯ , ݇ൟ is the set of ݇ 
covariate variables which associated with spatial characteristics (e.g. socioeconomic indicator, dwelling 
density, proportion of nomad residents, tenure type). Let ܰ ௧ܰ(ܽ) = ௧ܻ(ܽ) + ௧ܻ(ܼଵ(ܽ) is number of fires 
occurred at area ܽ  and its first order zone at time ݐ . To capture multiple effect of spatial independent 
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predictors in counting process, the Poisson regression is then used to estimate the rate parameter, so that, for 
any ܽ ∈ ,݆ and ܣ ݅ ∈ ܵ = ሼ0,1,2,⋯ ሽ, we define the transition probability from state ݆ to state ݅: 

log ቆ1 − (ܽ)௜௝݌(ܽ)௜௝݌ ቇ = (ܽ)௧ାଵߤ + ܰߛ ௧ܰ(ܽ) + ݉(ܽ) expቌߚ଴ +෍ߚ௔,௝ ௝ܺ(ܽ)௞
௝ୀଵ ቍ + ߳ (3) 

Where ߝ is a random effect describing spatially unstructured variation which has the Normal Distribution 
with mean 0 and variance 2ߪ. The term of ݉(ܽ) exp൫ߚ଴ + ∑ ௔,௝ߚ ௝ܺ(ܽ)௞௝ୀଵ ൯ is the Poisson regression. Further 
for each ܽ ∈  the transition probability matrix of the process is ,ܣ

ࡼ = ൥ܲ(ܻ1+ݐ(ܽ) = (ܽ)ݐܰܰ|0 = 0) (ܽ)1+ݐܻ)ܲ = (ܽ)ݐܰܰ|1 = 0) (ܽ)1+ݐܻ)ܲ⋯ = (ܽ)ݐܰܰ|0 = 1) (ܽ)1+ݐܻ)ܲ = (ܽ)ݐܰܰ|1 = 1) ⋯⋮ ⋮ ⋮ ൩ = ቎01݌(ܽ) (ܽ)01݌ (ܽ)01݌⋯ (ܽ)11݌ ⋯⋮ ⋮ ⋮ ቏ 
3. EXPERIMENT AND RESULTS 

Residential fire incident data was obtained from the Metropolitan Fire Brigade (MFB) for the period 1 June 
2005 to 31 May 2015. A total of 17,849 residential fires were attended by MFB over this period. Spatial 
variables were derived from census data at a Statistical Area 1 (SA1) level, and provide the attribute data on 
the built environment and socio-economic characteristics of residents. The MFB data was processed to 
calculate counts of fires by SA1 per month. To test the assumption of spatial dependence of fire occurrence, 
Moran’s Index is used. Moran’s index is a test of spatial autocorrelation which has values ranging from -1 
(indicating perfect dispersion) to +1 (indicating perfect correlation). A zero value indicates a random pattern. 
Table 1 data confirms that the observations are spatially correlated (z-values exceed 2.58, which is 1% 
significance level): areas with high counts of fire occurrence are surrounded by areas also with high counts.  

Table 1. Moran’s Index for spatial autocorrelation test. 

Year Moran's Index z-scores 
2005 0.676823 235.48758 
2006 0.780256 271.55308 
2007 0.342455 119.50279 
2008 0.77155 268.463 
2009 0.823819 286.72329 
2010 0.819341 285.1484 
2011 0.859582 299.4384 
2012 0.385141 134.10085 
2013 0.719401 250.34855 
2014 0.70113 243.9741 
2015 0.634548 2207748 

Figure 1 shows the mean number of days of first fire occurrence after last fire was occurred. The interval of 
next fire is calculated whenever a fire occurs at certain zone and certain time. From the figures, it can be 
inferred that Melbourne – Inner has the shortest time interval between the time of the last fire and next fire. 
The next fire in first zone, defined as area within radius 200 meter from fire incident, occurred on an average 
of 295 days (9 months); whilst others areas have about 14 month-time interval between the two consecutive 
fire occurrence. Figure 1 also illustrates trend of time interval across different zones. Most areas have similar 
trend that as the distance increase (represented by zone order), the time interval became shorter. This clearly 
highlighted the distance decay effect of time interval. From this, we consider in defining time lag as a time 
interval of nine-month period for Melbourne Inner area and 14-month period for other regions. 

 
Figure 1. Number of days of first fire occurrence after last fire was occurred. 
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The observed transition probability of fire occurs at an area ܽ given fires occurred at its neighbourhood 
including area ܽ, ܲ( ௧ܻାଵ(ܽ) = ݆|ܰ ௧ܰ(ܽ) = ݅), is estimated by counting the number of fire occurrence at 
certain time given the number of previous fires within neighbourhood divided by the total number of fire 
occurrence at area ܽ. For example, one may use the rule of conditional probability: ܲ( ௧ܻାଵ(ܽ)|ܰ ௧ܰ(ܽ)) = ܲ( ௧ܻାଵ(ܽ) ∩ ܰ ௧ܰ(ܽ))ܲ(ܰ ௧ܰ(ܽ)) = ܲ( ௧ܻାଵ(ܽ) ∩ ܰ ௧ܰ(ܽ))∑ ܲ( ௧ܻାଵ(ܽ) ∩ ܰ ௧ܰ(ܽ))ேே೟(௔)  

The term ܲ( ௧ܻାଵ(ܽ) ∩ ܰ ௧ܰ(ܽ)) is the probability of fire occurrence both in area ܽ and its neighbourhood 
which fires in neighbourhood occurred first then followed by fire incidents in area ܽ . To estimate the 
probability, first, we count the number of fires that satisfy ௧ܻାଵ(ܽ) = ݆ ∩ ܰ ௧ܰ(ܽ) = ݅  for ݐ = 1,2,⋯ , ܶ . 
Secondly, we sum these frequencies such as ∑ ௧ܻାଵ(ܽ) = ݆ ∩ ܰ ௧ܰ(ܽ) = ݅௧்ୀଵ . Repeat those steps for all states 
in ܵ other than ݅ and sum all these frequencies to obtain the total number of one-step fire occurrence starting 
in ݅. Finally, divide the number the second step and third step to obtain the probability.  

Table 2. Parameters estimation. 
 Estimate Std. Error z-value p-value 

Intercept -1.75801 0.15294 -11.49500 0 
residential density (Number/ha) ( ଵܺ) -0.00526 0.00063 -8.39400 0 
IRSAD Score (ܺଶ) -0.00050 0.00005 -10.55000 0 
Percentage owned dwellings (ܺଷ) -0.02838 0.00148 -19.15600 0 
Percentage of privately rented dwellings (ܺସ) 0.01041 0.00161 6.47600 0 
Percentage of publicly rented dwellings (ܺହ) -0.00280 0.00164 -1.71000 0.0873 
Percentage of residents moved in the last 5 years (ܺ଺) 0.02738 0.00137 19.97000 0 
Percentage of residents moved in last year (ܺ଻) -0.00949 0.00178 -5.31800 0 

The next step therefore is to develop a statistical model to estimate the probability by considering the spatial 
characteristics (e.g. residential density (Number/ha) ( ଵܺ), IRSAD Score (ܺଶ), percentage of owned dwellings 
(ܺଷ), percentage of privately rented dwellings (ܺସ), percentage of publicly rented dwellings (ܺହ), percentage 
of residents moved in the last 5 years (ܺ଺), and percentage of residents moved in last year (ܺ଻)). Table 2 
shows the estimation of the parameters which most variables pass the 5% significance level test. In the 
model, the residential density (the number of buildings per hectare) is predicted to have a negative influence 
to the number of fire occurrences. However, from this, it cannot be concluded that low residential density per 
hectare corresponds to a high fire density per hectare. It does appear the case however that as the area per 
dwelling decreases, so does the opportunity for fire ignition, all other factors excluded. Factors such as rental 
and transient residents, both increasingly associated with higher density, act to give increases in fire 
occurrence rates with density. Considering socio-economic factors, mobility of residents has positive effect 
on the number of fire occurrence. It is consistent with the influence of the type of tenure indicating that 
rented dwellings also have contribution to elevate number of fires. The socio-economic indicator IRSAD has 
a small negative effect on the number of fire occurrence. This suggests that areas with low score of IRSAD – 
most disadvantages are more likely to have high number of fire occurrence and vice versa.  

 
Figure 2. The transition probability of no fire incident given a number of fires within neighbourhood. 

Further step is to estimate the transition probability for any SA1 and for any ݆, ݅ ∈ ܵ = ሼ0,1,2,⋯ ሽ by using 
equation (3) and estimated parameters of Table 2. Figure 2 shows an example of the estimated transition 
probability of no fire incident given a number of recent fire incidents (i.e transition probability to state 0 from  
state j, for ݆ = 0,1,2,⋯ ,15. The result indicates that the probabilities of no fire incidents given a number of 
recent fire incidents are likely to exponentially increase as the number of fires within neighbourhood 
increases. Figure 2 also shows that when the number of fire incidents within neighbourhood is greater than 
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three incidents, the probability of no fire incident tends to remain in constant level. It can be inferred that 
three of more recent fire incidents may lead residents to keep their awareness for similar incidents in the 
future.  

Figure 3 shows an example of the likelihood map across the Melbourne region. Red colour indicates the low 
probability of no fire incident. In other word, the probability of fire incident will occur in the next period is 
high. Otherwise, green colour indicates the high probability of no fire incident; meaning that one may have 
high confident that there is no fire incident will occur in particular area. Figure 3(a) illustrates the probability 
of no fire which is given no fire incident in the past. From equation (3), one may expect that the probability 
of fire incident in each area depends only on its spatial characteristics (residential density, IRSAD Score, type 
of tenure, and mobility of residents). Figure 3(a) shows that that most areas across the Melbourne region, in 
particular the inner suburbs, are more fire prone which have high probability of fire occurrence (or low 
probability of no fire). Figure 3(b) illustrates the probability of no fire incident given a fire occurred recently 
within neighbourhood and shows that there is a significant different from Figure 3(a). Here, the probability of 
no fire incident tends to increase if there was a fire incident within neighbourhood. The likelihood of fire 
occurrence in most areas is changing except in some areas of inner suburbs such as Parkville, Docklands, 
Port Melbourne, and Southbank. The probability of fire occurrence whether there was a fire or not is likely to 
remain at the same. Therefore, it can be inferred that in those areas, the recent fire occurrence is likely to 
have no significant effect to residents to mitigate fire risk in the future.  

 
(a) 

 
(b) 

Figure 3. Map of the likelihood of no fire given no fire (a) and a fire occurrence (b) in the past within 
neighbourhood.  

4. CONCLUSION 

This research presents the preliminary findings of an analysis carried out on fire incident data for Melbourne. 
We developed a spatio-temporal statistical model, which enabled an empirical understanding of residential 
fire patterns across time and over space. First finding is the seven statistically significant spatial 
characteristics (e.g. residential density, IRSAD Score, type of tenure, and mobility of residents those spatial 
characteristics) are likely to have significant effect on the number of fire occurrence. Factor such as housing 
ownership and transient residents also have significant contribution to fire occurrence rates. This finding is 
entirely consistent with previous studies on residential fires and can be explained through urban ecology 
theory. The differing spatial pattern of residential fire density can be understood with respect to the 
consequences of human activities and changing ecological condition which in turn result vulnerability in 
urban areas. The second findings is whenever a fire incident occurred within neighbourhood, the probability 
of no fire incidents in the next certain period is likely to increase exponentially. The finding can be 
understood in a manner of information diffusion within neighbourhood. Information about and/or 
experiencing past residential fires within neighbourhood is likely to have effects and influence resident 
behaviour to mitigate fire risk in the future. The third finding is fire incidents occurred within neighbourhood 
may reduce the level of fire risk in most areas of Melbourne region except in some areas of inner suburbs, 
fire incidents within neighbourhood is likely to have no significant effect in reducing fire risk. Recently-
located residents as the tenure status in those areas may be naturally correlated to how residents receive 
information about fire incident throughout certain time interval. However, this result related to information of 
fire risk need to be improved by linking together data on fire-related personal injuries and fire severity, to 
help identify whether there is an impact of spatial variables or time on injury and severity measures.  

Future research will determine with confidence whether or not there is a neighbourhood “memory” effect of a 
fire incident. If local auto-correlation is due to the ability of residents within a neighbourhood to recall a fire 
event, the next step would then be to evaluate whether the strength of the effect is associated with levels of 
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severity in terms of minor personal injury or a fatality on the extreme end of impact. The findings form part 
of an evidence base relating to fire occurrence rate patterns and explanatory factors, which may be useful for 
emergency planners and fire agencies seeking to build appropriate strategies for mitigating the potential fire 
impacts on communities. It also aids in the assessment and classification of areas in terms of fire occurrence 
likelihood risk, that in turn will help determining the best location and frequency of promoting fire safety 
campaigns to residents so as to retain fire preparedness and awareness of fire risk.  
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