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flow is known as the stage cut. The helium losses in the retentate stream can be cut to a very low level by 
operating the membrane separation step at high stage-cut. Figure 4 shows two membrane separators in four 
different operating modes with different permeate pressure configurations. The permeate pressure in the 
permeator is assumed to be uniform, but different for each permeator (either 100 kPa or 300 kPa). In all 
modes, the retentate stream for the first stage serves as a feed for the second stage. 
In Mode A, the feed gas with lower permeate 
pressure enters the unit, and the retentate is 
treated by the unit with a higher permeate 
pressure. This is the intermediate operating 
mode as shown by the permeate concentration 
and helium recovery shown in the figure. 
Reverse feed flow is applied to operate mode 
B, this mode appears as most efficient one in 
terms of both helium permeation and 
recovery. In mode C permeator is operated 
with the same feed and retentate 
concentrations with different feed flow rates, 
has the less permeation value of helium as 
compared to mode B. Feed stream with high 
flow rate entered in low permeate pressure 
separator. Mode D operates high flow stream 
with high permeate pressure separator. Feed 
stream with high flow rate entered in high 
permeate pressure separator. This mode is 
operated like mode C. The process of the 
membrane gas separation can reach 
significant decreases in helium loss with a 
single membrane separation stage. More 
stages or steps may optionally be used as 
preferred to increase the concentration of 
helium in permeate or otherwise adjust the 
composition of permeate or retentate streams. 
Selectivity and permeability of the membrane 
eventually play an important role in the 
permeation of the desired gas. Multistage 
membrane separators are used to achieve the 
certain level of helium in the permeate stream. 
This process is shown in Figure 5. This 
configuration is simulated by increasing stage 
cut at the same pressures in feed and 
permeates side for all three membrane separators. 
The higher product concentration and permeation 
rate are achieved at the low-pressure ratio. Same 
pressures on both sides of the membrane are 
maintained with the use of a compressor to 
achieve higher driving force. The permeate from 
the first stage serves as the feed to the second 
stage and similarly permeate of second stage acts 
as the feed to the third stage. Table 2 describes 
the values of streams shown in Figure 5. It is 
possible to achieve a permeate stream with 
99.8% helium in three stages as shown in stream 
7. The results presented in Table 2 shown that the 
enrichment of helium is possible with multi-stage 
separation.   

4. CONCLUSIONS 

 

 

Figure 4. Effect of permeate pressure variation on permeation in 
multistage membrane separator 

 

Figure 5. Multistage membrane permeation of helium 
from 0.82% feed 
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The numerical model proposed in 
this research work has advantages 
over other models commonly used. 
It requires less computational effort 
and time resulting in improved 
solution stability. Additionally, the 
computational complexity does not 
increase as the number of 
separation stages increases. The 
model predicted the helium 
separation and recovery from 
multiple components gas mixture 
with different flow rates quite 
adequately. By observing the 
results of the mathematical model, 
it was found that the membrane can 
recover up to 99.9% helium in the 
permeate stream at a high stage cut. The countercurrent flow pattern predicted the high permeate mole 
fraction with minimum membrane area. This flow pattern is used to study the effect of different variables on 
separation of helium from the gas mixture. These variables included flow rate and composition of the feed, 
the pressure difference between the membrane and the total membrane area. The model is applicable to both 
single and multi-stage separation. Different modes are compared at different permeation pressure to predict a 
most efficient operating mode. The two or more separators at increasing pressure ratio and stage cut can be 
used to increase the overall performance of helium permeation, especially when a high concentration of the 
helium is needed.  

NOMENCLATURE 

A  membrane area 
Di inner diameter  
Do outer diameter  
d membrane thickness 
F feed rate (local) 
F  ̃dimensionless feed rate F ̃=F/n_f 
N number of fibers in a module, N = A/ (π Do L) 
n flow rate 
nc number of components 
L length of a fiber 
l coordinate of length  
l ̃  dimensionless coordinate of length, l ̃=l/L 
Pi permeability constant  
P pressure  
pi partial pressure  
Qi overall permeability, Qi = Pi/d  
R permeation factor (Eq. 4)  

T temperature  
xi molar fraction (high pressure side) 
yi molar fraction (low pressure side) 
αi selectivity of a membrane, αi = Qi/Qi=nc  
δ trans-membrane pressure ratio, δ = Pp/Pf  
θ stage cut (cut ratio), θ = np/nf  
µ viscosity of gas mixture   
g trans-membrane pressure ratio, g = Pp/Pf 
∆Plm,i  logarithmic mean partial pressure 

difference, (Eq. 7)  
Subscripts 
f feed inlet (high pressure side) 
r retentate (residue) outlet (high pressure side) 
s reference condition 
p permeate outlet (low pressure side) 
pc closed end of the hollow fiber 
i component i, i =1, 2, 3, . . ., nc.   
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