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between new, middle age, and old conditions of aircraft. The ageing process is influenced by the maximum 

flying hours and the required rate of effort, set by decision makers as a variable of Design Variant. Ageing 

also models the impact of aircraft’ retirement considering the time when the total flying hours exceed the 

maximum flying hours. 

• Loss: This module analyses the impact of the risk of loss of aircraft, during operation, on the system

performance.
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Figure 1. The high-level model architecture 

4. THE RESULTS OF EXPLORATORY ANALYSIS

The future performance of the system (the aircraft fleet, in this case) varies depending on the chosen design 

strategies, i.e. the combinations of different values for new acquisition and maintenance capacity. The question 

of interest is how different strategies affect the performance of the system. The desire of decision makers to 

reach a deterministic picture from the impacts of different strategies is not possible under deep uncertainty 

(Stirling, 2010). Simplifying uncertainties for the sake of having definitive conclusions would result in 

apparently appealing but practically erroneous advice. We adopted exploratory analysis to avoid this issue and 

to present plural and conditional advice to assist decision makers in choosing between design strategies.  

We used the model, developed in Section 3, to explore the impact of three maintenance and acquisition 

strategies (see Table 1) on the performance of the system: High Acquisition – Low Maintenance; Medium 

Acquisition – Medium Maintenance; and Low Acquisition – High Maintenance. The performance is expressed 

in terms of the total cost of new acquisition and maintenance, the number of aircraft in service, and the size of 

waiting queues for deep and operational maintenances. A dataset was compiled from different sources for 

model simulations. Seven hundred Monte Carlo experiments were performed with AnyLogic for the specified 

range of uncertainties (see Table 2) over a model time-horizon of 800 weeks. The experiments capture a wide 

space of conditions within which the system can operate. We then used a Python package, known as the EMA 

Workbench (J. Kwakkel, 2016), for the exploratory analysis of the experiments. Figure 2(a) and Figure 2(b) 

represent the average flying hours of the aircraft in a fleet and their total maintenance and acquisition costs 

under different strategies. We used histograms with kernel density estimates (KDE) to represent the diversity 

of the system performance in each variable.  
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Figure 3 shows the distribution of the number of aircraft in-service and the size of waiting queues for deep and 

operational maintenance, for all time, across experiments and for each strategy. We represented the state of 

these variables in each single experiment with a KDE. What we are interested in Figure 3 is the peak (i.e. the 

highest probability of the number of aircraft or the size of queues in lifetime) and how the experiments are 

populated around each the peaks (i.e. the highest likelihood for the number of aircraft or the size of queues 

across all experiments). 

Table 1. Number of acquisition and size of maintenance capacity in each design strategy 
Parameters Strategy I: High 

Acquisition – Low 

Maintenance 

Strategy II: Medium 

Acquisition – Medium 

Maintenance  

Strategy III: Low 

Acquisition – High 

Maintenance 

Number of new acquisition 6 4 2 
CAP capacity 0 1 3 

OM capacity 1 2 3 

DM capacity 1 2 3 

Table 2. List of uncertain parameters and their ranges of variation (+-50%) 
Uncertain parameter Range 

The risk that that an aircraft is lost during operation 0.00065 – 0.00195 (-) 

The life time of aircraft 93600 – 280800 (hour)  

A minimum and maximum for total required flying hours with a uniform distribution 30 – 91; 42 – 126 (-) 

Expected time spent by an aircraft in CAP 12 – 36 (week) 

The time between CAP events 10 – 30 (week) 

Expected time spent by an aircraft in DM 8 – 12 (week)  
The time (flying hours) between DM events 500 – 1500 (hour) 

Expected time spent by an aircraft in OM 2 – 5 (week) 

The time between OM events 125 – 375 (hour) 
Cost of OM 100,000 – 2,000,000 ($) 

We assumed that the decision makers in our example have a number of objectives: increasing the average 

flying hours of the fleet while minimising the costs associated with it; maintaining a high number of aircraft 

in-service while avoiding long waiting queues in maintenance lines. Based on the results of exploratory 

analysis in the pre-defined strategies (see Figure 2 and 3), none of strategies can satisfy all objectives at the 

same time. The performance of three strategies can be analysed by making a trade-off among the fulfilment of 

multiple objectives. As an example, we analysed this performance trade-off in Strategy III (Low Acquisition – 

High Maintenance) as follows: 

• First: investing in maintenance capacity could be a more effective strategy for improving the availability

of in-service aircraft and the average flying hours compared to buying new aircraft. This could also reduce

the waiting queues for maintenances. The total aircraft in-service (see

• Figure 3(a)) in Strategy III (with a high maintenance capacity) is distributed around three with a variation

to 10 aircraft while the distribution of aircraft in-service in Strategy I (with a high acquisition rate) has a

mean of one and can vary to a maximum of six aircraft. Also, the average flying hours in Strategy III (see

Figure 2(a)) has a distribution populated around a higher value (mean: 8000 hours) compared to Strategy I

(mean: 2000 hours). This behaviour can be explained by the fact that the acquisition of new aircraft

increases the pressure on the maintenance lines and creates a buffer of long waiting queues. The longer

queues in a strategy with high numbers of acquisitions are evident in 3(b) and 3(c) where there is a local

maximum of 10 and 12 aircraft in deep and operational maintenance queues.

• Second: a design strategy with emphasis on maintenance capacity could end up with higher total costs

compared to a strategy with a larger number of new acquisitions. This is reflected in Figure  where the

mean of total costs in Strategy III is around $900 billion compared to about $500 billion total costs in

Strategy I. The extent to which this increase of costs could work against the desirability of Strategy III

depends on the sensitivity of decision makers to different objectives in their decision making process.

• Third: a design strategy with larger maintenance capacity could result in a wider uncertainty in the future

performance of the system, in terms of average flying hours and total cost. The implication of this is that

increasing the maintenance capacity is not a preferred strategy if decision makers expect more deterministic

advice. Figure 2(a) shows that Strategy III has a higher mean of average flying hours compared to the other

strategies, but it is subject to wider uncertainty, a range from 2000 to 30000 hours (where this varies

between around 1000 to 10000 in Strategy I).
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Figure 2(a). Histogram and KDE for average flying 

hours of the aircraft (hours)

Figure 2(b). Histogram and KDE for total 

acquisition and maintenance cost ($billion) 

(a)                                                   (b)                                                  (c) 

Figure 3. Kernel density estimates for the number (a) of aircraft in service, (b) in the deep maintenance 

queue, and (c) in the operational maintenance queue, in a period of 800 weeks 

5. CONCLUSIONS

The decision making of complex systems is challenging because of their complexity-driven characteristics and 

the uncertainties in their surrounding environment. We discussed that a traditional consolidative system 
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modelling with a predictive/deterministic approach for the future-oriented analysis of results is complicated, 

costly and erroneous. We argued that: (1) a multi-method approach to modelling can improve the limitation of 

each separated modelling techniques in explaining system complexity, and (2) an exploratory analysis of 

modelling results can cope with deep uncertainty and propose plural decision advice that work under diverse 

plausible futures. To explain our proposed exploratory multi-method modelling approach, a combined discreet 

event and system dynamics model was developed for asset acquisition and management systems with an 

illustrative example in aircraft fleets. We performed an exploratory analysis for system’s uncertainties and 

concluded that a design strategy based on increasing the size of maintenance capacity could lead to higher 

average flying hours in a fleet but also higher total costs compared to a strategy with the larger number of new 

acquisitions. A limitation of the current analysis is in a way that we proposed decision advice by comparing 

design strategies with three sets of pre-defined values for the number of new acquisition and size of 

maintenance capacity. Decision makers, in reality, do not have presumed strategies in advance. Instead, they 

expect the strategies to be suggested by decision support tools. A future research is to show how our exploratory 

multi-method approach can suggest robust design strategies by making a trade-off between the number of new 

acquisitions and the size of maintenance capacity, in the process of exploratory analysis.  
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