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3.2. Real-world application 

In contrast to the toy problem situation above, we found that short-term planning didn’t result in non-optimal 
solutions when optimizing the urban pattern in the municipality of Uster in Switzerland. First, there was no 
gap between the fronts produced in the optimization process simulating long-term planning and the fronts 
produced in the optimization process simulating short-term planning (Figure 2). Second, the most compact 
patterns resulting from the simulations until 2050 (adding to land-use map in 2010 two times 106 new urban 
cells (short-term planning) and adding 212 new urban cells (long-term planning) are very similar and both 
contain the pattern found when simulating short-term planning until 2030 (Figure 3).  

The fact that short-term planning didn’t result in non-optimal solutions means that urban planners could be 
recommended to develop a zoning plan for 2030 first and afterwards to create a second plan for 2050. If they 
would instead do the zoning for 2050 (starting in 2010), they might designate too many agricultural cells to 
future urban areas (oversized zones) because the demand for urban areas may have been overestimated. 
However, urban planners will try to avoid oversized zones because they often result in unforeseen and non-
optimal urban patterns, as the actual allocation of urban areas within zones is strongly driven by economic 
factors and does usually not account for externalities (Holcombe and Williams, 2012).  

The simulation of the short-term planning reveals that a chosen preference, expressed as the weight for the two 
objectives, strongly determines which solution we are able to reach in the long run  (Figure 2 a, Figure 4 a). 
Selecting a preference early (Figure 2 a) will allow us to reach a wider range of solutions than when selecting 
the preference in a later stage (Figure 4 a). This could mean that if there is uncertainty about the right 
preferences, short-term planning may be more reasonable, as an early adjustment in preferences may have a 
larger effect than later adjustments.    

Interestingly, we found that two patterns having almost the same objective values showed quite some 
differences in the decision space (i.e., in the land-use patterns). While most of the 212 urban cells allocated in 
the two optimization runs (short- and long-term simulation) were at the same location, more than 30 of them 
were found at different locations (comparison of pattern 441 and 336). Instead of preserving the diversity of 
solutions within in the objective space, accomplished by the so-called crowding distance in NSGA-II (Deb et 
al., 2002), it may be helpful to also preserve diversity in the decision space. Taking such diversity into account 
may not only be helpful to get as close as possible to the true Pareto-Front, but may also be used when trying 
to preserve non-dominant solutions that are close to the Pareto Front in the objective space, but very different 
in the decision space. This can be very useful, when decision makers want to evaluate a wide range of options 
(e.g. Kwakkel et al., 2016).    

 
Figure 2. a),b): a) The figure shows 3 non-dominated fronts. Two of them represent the short term-planning process (black 
dots with fill, blue dots without fill color) while one of them represents the long-term planning (grey dots without fill color). 
Short term planning involved one optimization run placing 106 new urban areas (which corresponds approximately to the 
year 2030) onto the current land-use map (from 2010). After that, one pattern from the front of non-dominated solutions 
was selected (yellow dot) and again 106 new urban areas were placed onto this land-use pattern. In total there were 212 
new urban areas. For the long-term planning process, 212 new urban areas were allocated in one single optimization run. 
b) In total the figure shows 14 non-dominated fronts. Each yellow dot represents a land-use pattern that was used as a 
starting point for an optimization run (short-term planning process). Each blue front is a result from the optimization process 
based on one of the starting patterns. The front produced for long-term planning until 2050 is largely invisible as it is mostly 
covered by the 12 blue fronts. The most compact pattern in the year 2030 (pattern 534), the most compact one in 2050 for 
short-term planning (pattern 441) and the most compact pattern of long-term planning (pattern 336) are shown in Figure 3.   
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Figure 3. a)-c): Red cells: Urban areas; Yellow cells: Agricultural areas; Green Cells: Forest areas, Blue Cells: Water; 
Black Cells: New Urban areas which were allocated in the optimization process. a) Pattern 534. Most compact pattern when 
106 new urban areas are added in the optimization process (short-term planning) to the current land-use in the year 2010. 
b) Pattern 441. Most compact pattern when 106 new urban cells are added to pattern 534. c) Pattern 336. Most compact 
pattern, when 212 new urban cells are added to the current land-use in the year 2010.  

 
Figure 4. a), b): a) The figure shows 3 non-dominated fronts. Two of them represent the planning process when first using 
a conservative demand estimate of 174 ha (black dots with fill) and afterwards adding 38 ha more of urban areas (blue dots 
without fill color). This could also be interpreted as a short-term planning process (2010-2043-2050). The third front was 
produced for the median demand prediction and corresponds to the long-term planning until 2050 (grey dots without fill). 
b) In total the figure shows 14 non-dominated fronts. Each yellow dot represents a land-use pattern that was used as a 
starting point for an optimization run (conservative scenario/short-term planning process). Each blue front is a result from 
the optimization process based on one of the starting patterns. The front produced for the median demand estimate (or long-
term planning until 2050) is largely invisible as it is covered by the blue fronts.  

3.3. Comparison of toy experiment and real-world application 

The toy experiment showed that a short-term planning process can be problematic if it prevents finding an 
optimal solution on the longer run. However, the real-world application showed that this doesn’t necessarily 
have to be the case. It will depend on the spatial pattern of the current land-use and the spatial pattern of the 
soil quality, whether a short- or a long-term planning process is recommendable. In order to be able to give a 
more generalizable recommendation to urban planners, it would thus be necessary to apply our analysis to a 
large variety of different municipalities. 

Building on this work, future analysis could address the question whether it is possible to identify a minimum 
length of the planning periods with which it would still be possible to find the best solutions in comparison to 
a long-term planning period (i.e., for the longer run). In addition, it could be necessary to formulate the whole 
problem in a more dynamic approach (Zhiqiong and Bojin, 2010), as urban planners may not only want to 
identify the best possible solutions at a defined point in time but also find good solutions applicable over a 
period of time.  

4. CONCLUSIONS 

In this paper, we have shown that multi-objective optimization can be used to support urban planners in 
choosing the right planning horizon. The presented methodological approach and results show that multi-
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objective optimization can be more useful than just providing decision-makers with optimal solutions for 
complex problems. We believe that demonstrating innovative approaches of how to use multi-objective 
optimization has the potential to enhance decision-making processes and will foster the application of multi-
objective optimization in the area of urban modelling and planning.   

In a concrete example using multi-objective optimization we showed that short-term planning would be 
recommended for the urban planning problem in the municipality of Uster in Switzerland. However, it depends 
on the spatial pattern of the current land-use and the spatial distribution of the soil quality, whether a short- or 
a long-term planning process is recommendable. Building on this work, future analysis could address the 
question whether it is possible to identify a minimum length of the planning periods with which it would still 
be possible to find the best solutions in comparison to a long-term planning period. The methodology we 
developed could help planners to identify the right planning horizons for a large variety of spatial planning 
problems. 
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