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Abstract: Frost causes millions of dollars of damage to broad acre cereal crops and is an important climate 
risk that presents a management challenge to grain growers in Australia. Management options to mitigate 
impact of frost include pre-season cropping decisions such as timing of sowing, choice of crop type and 
cultivar, and post-frost event management such as cutting for hay, or grazing frost-damaged crops. This study, 
conducted in close collaboration with growers and farm consultants, contributes to both pre-season and post-
frost management through improved spatio-temporal understanding of frost risk.  

This study aims to identify combinations of meteorological and terrain variables suitable for generating high 
spatial resolution (approx. 30 m) maps of minimum temperature (Tmin). This mapping used Multivariate 
Adaptive Regression Splines (MARS) models to combine terrain indices with temperature data. Modelling and 
mapping were undertaken for two sites in the SE Australian cereal-cropping zone, Mintaro, South Australia 
and Hopetoun, Victoria. To facilitate the development of the mapping methodology, iButton® temperature 
loggers were deployed at each site during June-September 2016. A clustering-based sampling scheme, for 96 
loggers at each site, sought to capture terrain-driven temperature variability at landscape scale (4 x 4 km at the 
Mintaro site; 5 x 3 km at the Hopetoun site). The logger dataset from the Mintaro site included data from 71 
loggers over 25 cold nights (<2°C) and from the Hopetoun site 87 loggers over 20 cold nights, with 
temperatures recorded at 30 minute intervals. 

MARS models were developed to predict the logger Tmin values. We compared models using three separate 
sources of temperature data, a local weather station at each site, an official weather station and remotely sensed 
Moderate Resolution Imaging Spectroradiometer (MODIS) night-time land surface temperatures. We also 
developed models using temperature loggers themselves as predictors for the entire site, both individually, and 
with all 3-logger combinations for each site. 

Comparing models which used local, distant, and remotely sensed temperature predictors showed that locally 
measured temperatures generate the best models. Then, using the individual loggers as predictors showed that 
wind speed and humidity were important predictors in many cases. Additionally, by modelling every three-
logger combination for each site, we demonstrated that some logger locations were not used in any models, 
and further, some models using a single logger performed well.  

There are several practical findings from this work. Firstly, local temperature measurements show the best 
potential for generating high-resolution maps of Tmin at farm scale. Our results also suggest that remotely sensed 
temperature is not acquired reliably enough to make it suitable for this purpose. Models based on temperature 
data from one to three logger locations fitted well, but showed that location of loggers may be important. The 
improvement to models by including wind-speed and humidity measurements shows that these may be 
important parameters to measure. With further validation and refinement of the methods, we believe this 
method has the potential to be applied across the broad acre cropping areas of Australia.  
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1. INTRODUCTION 

Frost damage to cereal crops through reduced yields and damage to grain is estimated at between $120 and 
$700 million per annum in Australia (see Crimp et al. 2016). Frost can occur as severe and catastrophic events, 
and trends observed in some areas of south-eastern Australia show increased frost season lengths affecting 
cereal growers (Crimp et al. 2016). Many factors influence susceptibility of crops to damage including crop 
variety, phenological stage and degree of acclimatization. At a farm scale, minimum air temperatures vary 
spatially and may be affected by terrain position, localised air movements, soil moisture, crop biomass and 
stubble ground cover. Growers make strategic frost management decisions at a farm scale, such as selecting 
crop variety for frost hardiness and sowing times which affect time of flowering, a vulnerable cereal crop stage. 
Tactical decisions are also made after frost events to maximize the value of damaged crops, for example by 
cutting for hay.  

Radiative frost, the most common type of frost in broad acre cropping areas, does not occur uniformly across 
the landscape. Farmers might rely on a single weather station many kilometres away for frost information, and 
very limited spatial data are available at a resolution suited for farm decision making. Thus a key problem in 
managing frost over a whole farm is that temperatures recorded at a single weather station do not indicate the 
temperature a crop is exposed to (De Melo-Abreu et al. 2016). To facilitate better pre-sowing management 
decisions and better target tactical responses after frost events, growers would benefit from higher resolution 
maps of minimum temperatures (Tmin). 

This study investigates the potential to use MARS modelling to integrate a range of meteorological, remotely 
sensed and terrain data to derive high-resolution maps of Tmin suitable for farm decision support. A number of 
previous studies have produced high-resolution maps of climatic variables by combining spatial predictors 
(derived from digital elevation models) with temperature data, using statistical modelling methods (e.g. Aalto 
et al. 2017; Ashcroft and Gollan 2012; Webb et al. 2016). Other studies have used remotely sensed 
temperatures, such as Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature 
(LST) product for frost and Tmin mapping (Gobbett et al. in press; Simoes et al. 2015) (remotely sensed 
temperature is anticipated to be suitable because frosts in the Australian broad-acre cropping areas are mainly 
radiative frosts, occurring on clear cloud free nights). However, such studies do not provide the spatial or 
temporal resolutions to address grain growers’ need for improved temperature mapping at farm scale, with 
daily frequency. We compare the utility of temperature measurements locally, and from more distant weather 
station data and remote sensing. Through this we develop some preliminary practical recommendations for 
farm scale temperature mapping. 

2. METHODS 

The central methodology used in this study was the application of Multivariate Adaptive Regression Splines  
(MARS; Friedman 1991) models to amalgamate terrain indices with temperature data. Models were developed 
to enable the prediction of minimum temperature across a landscape at the scale of the terrain indices (approx. 
30 m pixels). To acquire data to enable the development of suitable models, temperature loggers were deployed 
during winter 2016, capturing temperature data over the range of terrain variation at each site. 

2.1. Study sites  

Two study sites (Figure 1) were chosen on the basis of (a) a history of frost damage, (b) terrain (an elevation 
range of at least 20 m, a topography including at least one gully where air flow might converge and (c) land 
use representative of farmland in the broader region.  

 

Figure 1. (a) Location of sites and deployed iButton® logger locations, overlaid on terrain elevation for (b) Mintaro site 
(4 x 4 km) and (c) Hopetoun site (5 x 3 km). Cross-hatched areas are the high density logger sampling areas. 
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Both sites included access to an in situ weather station to capture temperature and wind speed at sub-hourly 
frequency, as well as an Australian Bureau of Meteorology (BoM) weather station within 20 km. The Mintaro 
site (Figure 1b) of 4 x 4 km comprises a higher elevation in the western section with valleys running to the 
east into the site and a much flatter area across the eastern half of the site. The Hopetoun site (Figure 1c) of 5 
x 3 km is in typical Mallee dune-swale landscape with higher dunes at the western and eastern ends of the site 
running NNE to SSW, and a large swale between, containing some undulations. 

2.2. Terrain variables  

Terrain is an important contributor to patterns of Tmin. A variety of topographic indices have been utilized in 
studies modelling cold air temperatures (e.g. see Aalto et al. 2017; Webb et al. 2016). Terrain variables were 
derived from the national 1 arc second (approx. 30 m pixel) Shuttle Radar Topography Mission (SRTM) 
derived elevation model (DEM; Gallant et al. 2011). To stratify the location of loggers in this study (see below), 
we preselected several DEM derived variables for their anticipated usefulness in characterizing terrain 
influences on cold air movement, soil moisture and diurnal solar warming of the surface (Table 1). In the 
MARS modelling process (described below), we utilized additional elevation residual indices (radii of 100, 320, 
1,000, 3,000 and 10,000 m) and elevation range datasets (radii of 50, 70, 100, 140, 200, 320, 500, 700, 1,000 and 1,400 
m). Multi-resolution Valley Bottom Flatness index (MrVBF) was excluded from MARS modelling due to the 
composite nature of the index, and elevation due to it being a relative rather than absolute value. 

Table 1. Terrain indices selected for logger sampling scheme and temperature modelling. Variables are listed in descending 
order of (a priori) expected influence on temperatures.  

Variable Description 
Elev residual 320 m Elevation minus the mean elevation within a radius (i.e. relative position in the terrain) 
Elev range 320m Range of elevation within a radius (i.e.‘terrain complexity’ around a point) 
MrVBF Multi-resolution Index of Valley Bottom Flatness. (Gallant and Dowling 2003) 
Elevation Elevation above datum 
SWSRR_June June short wave solar radiation ratio. Incorporates slope, aspect (Gallant et al. 2014) 
TWI DEM derived topographic wetness index (Gallant and Wilson 2000) 

2.3. Temperature logger deployments  

To obtain data with which to model minimum temperatures across the landscapes, 96 iButton® temperature 
loggers (DS1922L; Maxim Integrated Products, California) were used to capture temperature data at each of 
the two study sites (Figure 1). To design the sampling scheme, terrain variables (Table 1) were used with 
clustering techniques (e.g. Jin et al. 2005) to ensure the loggers were distributed across the terrain variability 
as represented by the chosen variables. Since MODIS downscaling was a key focus, the sampling scheme 
included an area of high density loggers i.e. 20 loggers corresponding to one MODIS pixel (1 km²), intended 
to capture within-pixel temperature variation. The remaining area containing at least one logger per 1 km². To 
avoid obstructing farm operations such as crop spraying, the loggers were deployed at 50 cm above the ground. 
The iButtons were supported by wire stakes, constructed from high tensile fencing grade wire, which included 
an arm providing a 12 cm offset from the stake. Each logger was configured to log temperature at high 
resolution (0.0625°C) at 30 minute intervals. Logger data were cleaned to remove anomalous data and were 
then splined using cubic spline interpolation (R Core Team 2017) to generate temperature readings at 1 minute 
intervals. Nightly logger Tmin was derived from the 1 minute splined data. 

2.4. Weather variables for modelling 

Temperature and weather variables from three sources were used in the Tmin modelling. (a) A meteorological 
station at each study site recording overnight Tmin (°C), wind speed (m/s) and average humidity (%); (b) 
Overnight Tmin from the nearest official Bureau of Meteorology (BoM) stations, at Hopetoun 15 km E of the 
study site (Hopetoun Airport, BoM station: 77010) and at Mintaro 16 km WNW of the study site (Clare High 
School, BoM station: 21131); (c) MODIS (Aqua) satellite Land Surface Temperature (LST) product 
MYD11A1 (v5; Wan 2008) preprocessed for the Australian region (Paget and King 2008) with a spatial 
resolution of 1 km². Over the dates of the temperature logger deployments, the mean MODIS overpass (in local 
time) was 1:37 am at Hopetoun and 1:56 am at Mintaro. MODIS LST values were spatially extracted from 
stacked MODIS data for each of the logger locations using the R raster ‘extract’ function (Hijmans 2016).  

Multivariate Adaptive Regression Splines modelling 
MARS is a nonparametric regression procedure which extends linear modelling through the use of hinge 
functions, and also accommodates interactions between variables. MARS methods have been successfully 
applied to related areas such as downscaling satellite derived thermal imagery utilising terrain variables (Qi et 
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al. 2016), and in modelling daily Tmin in  the Yarra Valley, Victoria (Gobbett et al. in press). Here we use the 
‘earth’ implementation of MARS methods (Milborrow 2017), within the R environment (R Core Team 2017).  

Earth models, with the logger Tmin as the dependent variable, were generated individually for Hopetoun and 
Mintaro, and also using combined data from both sites. To restrict the dataset to potential frost nights, nights 
were only included in modelling if the local met station Tmin was < 2°C. Models separately used the three 
sources of temperature predictors, including local weather station, BoM station and MODIS predictors. Local 
average wind speed and humidity from the local weather station were also used in combination with local Tmin. 
The same terrain variables outlined above were included as predictors in all models. Day of the year (DOY) 
was also included as a predictor. The following ‘earth’ parameters were used consistently to allow comparison 
among models: degree=2 (maximum degree of interaction between predictors); nprune = 8 (setting the 
maximum number of MARS terms). The nprune term was determined after some trial and error, and this value 
was found to be a compromise between model simplicity while maintaining a good R², and importantly, 
ensuring that most models included a spatial terrain parameter. Model performance was evaluated using R², 
RMSE and cross-validation R² (CV R²). Cross validations of the earth models were performed using nfold = 
10, ncross = 10 (performing 10 cross-validations using 10 cross-validation folds), except in the case of the 3 
logger combination models, where for performance reasons, the cross-validation used nfold = 5, ncross = 5. 
For selected earth models and nights, the earth ‘predict’ function was used to apply the MARS models to 
generate minimum temperature surfaces at the resolution (approx. 30m) of the terrain datasets. 

To examine temperatures measured at different locations within the study sites, MARS models were generated 
in which all the combinations of 3 loggers at each site were used as temperature predictors for the remaining 
logger Tmins. To enable this we prepared a cross tabulated dataset of logger Tmin data that was filtered to remove 
any nights where data from more than 20 loggers were missing for each night, and then further filtered to 
remove any remaining loggers for which had missing readings.  

3. RESULTS 

3.1. Logger data  

At the Mintaro site, loggers were deployed for 69 days (16th June to 22nd August 2016), while Hopetoun loggers 
were deployed for 85 days (28th June  to 21st September 2016), although farm operations prevented deployment 
in a few paddocks until 21st July 2016. The subset of logger data selected for MARS modelling, only included 
nights where the local weather station Tmin fell below 2°C. The resulting Mintaro dataset included data from 
71 loggers over 25 cold nights (1544 separate logger Tmin values) and the Hopetoun dataset included data from 
87 loggers over 20 cold nights (1581 separate logger Tmin values). 

3.2. Local, distant and remotely sensed temperature  

We compared the MARS models predicting the logger Tmin, where each model used only one temperature data 
source, (a) local weather station Tmin (Local Tmin) either with or without associated average wind speed, (b) the 
15-16 km distant BoM station (BoM Tmin), and (c) MODIS LST. Mintaro and Hopetoun sites were modelled 
separately, as well as models using a combined dataset. Table 2 summarises the predictors selected in those 
models, including predictor importance from the evimp tool (Milborrow 2017). Figure 2 shows MARS model 
Tmin predictions for 15th August 2016, when severe frost affected both Mintaro (top) and Hopetoun (bottom).   

The models using the local weather station data resulted in better models than either the BoM station or MODIS 
LST at both Mintaro and at Hopetoun. One exception was Hopetoun, where the Local Tmin (without wind 
speed) model and MODIS LST model performed comparably well. The best models produced were for Mintaro 
using Local Tmin with (CV R²=0.82). DOY showed up as a more important predictor in models with MODIS 
LST than with the other temperature predictor variables. Wind was not included by MARS in models for 
Mintaro, but was included for Hopetoun (perhaps due to flatter terrain) as well as the combined model. 
Humidity was not selected in any of the models, further investigation is required as to the reasons for this. 

Of the terrain variables selected in the MARS models, 3000 m radius Elevation Residual was moderately to 
highly important in all models, except the Mintaro MODIS LST model which incorporated the 1000m radius 
elevation residual instead. Elevation range was less consistent as a predictor, with the importance being equal 
or lower than elevation residual in all models. Elevation range over 1000m was most used in Hopetoun models, 
and elevation range over 320 m was most used in Mintaro models. Elevation range was not included in any 
models that used the more distant BoM station Tmin data. June short wave radiation ratio was only included in 
one model, the MODIS LST model for Mintaro.  

A key finding with MODIS LST data was that, due to unsuitable atmospheric conditions, LST coverage was 
unavailable at both sites on 30% of the nights where frost occurred (i.e. local weather station Tmin < 2°C). 
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Table 2. Summary of earth models predicting logger Tmin using temperature predictors from local met station, BoM 
station and MODIS LST, showing predictor importance (output by MARS evimp function) and model errors. Shading of 
R², CV R² and RMSE columns show better performing models with darker shades.

 

 

Figure 2. Examples of MARS model Tmin predictions for 15th August 2016, when severe frost affected both Mintaro (top) 
and Hopetoun (bottom). (a, d) predictions using local weather station Tmin and terrain indices (b, e) predictions using 
BoM station Tmin and terrain indices, (c, f) predictions using MODIS LST data (approx. 1 km²) and terrain indices. 

3.3. Individual logger models 

MARS models were generated using each individual logger Tmin as a predictor for the remaining loggers. While 
humidity was not used in the preceding models using Local Tmin, BoM Tmin or MODIS LST, it is interesting 
that it was used in almost half of all models using loggers as the Tmin predictor at both sites, and had similar 
importance as wind speed at both sites (results not shown). To investigate whether wind speed and humidity 
variables are important at particular locations in the terrain, we mapped the importance of wind speed and 
humidity for the loggers across both sites. However this showed no correlation with terrain variables or 
landscape position (results not shown), so may require further investigation.  

3.4. Multiple logger models  

By generating MARS models using all possible 3-logger combinations  as temperature predictors for each site, 
we investigated whether any combination of loggers provided substantially improved models, and 
combinations of 1, 2 or 3 loggers performed substantially differently overall, and further, whether any locations 
were more or less important across the sites. After removing loggers which did not capture data over all nights, 
Tmin data were available from 74 loggers over 15 cold nights at the Hopetoun site and 46 loggers over 25 cold 
nights at the Mintaro site. Of 15180 models fitted for the Mintaro site, 11% used only one of three loggers, 
60% used two and the remaining 29% used all three loggers (Table 3). That some 1 logger models 
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Hopetoun Local Tmin 74 24 34 100 0.68 0.74 0.91

Local Tmin (+ Wind) 75 32 32 32 100 9 0.70 0.76 0.88

BoM Tmin 73 30 16 100 0.66 0.75 0.94

MODIS LST 68 48 20 100 0.68 0.72 0.91

Mintaro Local Tmin 100 17 23 5 5 48 0.76 0.82 0.74

Local Tmin (+ Wind) 100 17 23 5 5 48 0.76 0.82 0.74

BoM Tmin 100 56 67 0.69 0.79 0.85

MODIS LST 100 82 39 39 21 0.69 0.77 0.91

Combined Local Tmin 100 11 16 31 21 58 24 0.68 0.74 0.90

Local Tmin (+ Wind) 100 33 26 21 59 0.69 0.75 0.89

BoM Tmin 82 38 26 100 0.59 0.71 1.01

MODIS LST 74 62 22 100 0.54 0.60 1.11
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outperformed 2 and 3 logger models suggests that additional loggers would provide limited improvement to 
modelled minimum temperatures provided they are optimally located. Further, 25 of the Mintaro loggers were 
not selected by MARS in any of the models. Similar results were obtained from 64,824 models fitted for the 
Hopetoun site (results not shown). This demonstrates that some locations are less useful for farm scale 
minimum temperature predictions, and that location of loggers may be important. 

Table 3. Summary of Mintaro models in which 15180 combinations of three loggers were used as temperature predictors 
for the entire site. 

Loggers in model Proportion mean R² mean CV R² mean RMSE 
1 11% 0.779 0.839 0.718 
2 60% 0.772 0.839 0.729 
3 29% 0.773 0.839 0.728 

4. DISCUSSION AND CONCLUSIONS 

We have successfully utilized a variety of temperature data sources and terrain indices to generate high-
resolution maps of minimum temperature. For optimal tactical decision making in response to frost, farmers 
need to know, in a timely manner, where in their paddocks frosts have been most severe. This will help them 
to inspect crops for damage, and make prompt decisions if crops are to be cut for hay instead of allowed to 
grow to maturity for harvest. 

We have identified key terrain variables relevant to Tmin modelling at each site, and shown the elevation residual 
with 3 km radius to be the most important predictor, usually in combination with an elevation range variable. 
Generally, and unsurprisingly, more local temperature measurements were better predictors than distant 
stations and remotely sensed data. For both sites, local temperature measurements produced the best-fitted 
models, and MODIS LST performed similarly to, or less well than a single BoM station many kilometres from 
the study sites. However, given our assumption that frosts in our broad acre cropping study regions are radiative 
frosts, we were surprised that MODIS nightly coverage was not available for about 30% of nights at both sites. 
This demonstrates a key limitation of remote sensing for daily high resolution Tmin mapping, which ideally 
needs to be available immediately following a frost event to assist farmers in damage assessment and tactical 
response to a frost event. Furthermore, our results confirm that one to three local temperature and wind 
measurements can be used to generate robust high resolution Tmin maps.  

Daily Tmin maps (and similar models of duration of low temperatures, results not shown) can be used by farmers 
to aid in assessment of crop damage following a frost event, and therefore can contribute to improving tactical 
response. Furthermore, these maps can be aggregated over one or more cropping seasons to highlight areas 
most at risk of frost, and therefore contribute to strategic management of frost risk, such as in selection of crop 
variety and sowing dates. 

Two key practical findings were derived from using loggers as Tmin inputs into MARS models. First, the single 
logger modelling showed, despite earlier results, that wind speed and humidity may be important to measure. 
The lack of spatial pattern in where wind and humidity were included in models suggests this needs to be 
further tested. Secondly, models generated using 3-logger combinations showed that one logger can result in 
models as well fitted as some with three loggers. This, together with the finding that some loggers were not 
used in any of the models, highlights that the location of loggers within the site is important; an aspect which 
clearly should be further investigated.  

The importance of the DOY predictor in the MARS models is an area for further investigation, since this non-
physical variable may be reflecting a number of non-measured factors such as soil temperature (perhaps 
declines over the season), incident solar radiation, crop biomass or height effects. In the case of MODIS 
models, this may also be capturing the change in elapsed time between MODIS overpass (around 1:30 am) and 
the time of Tmin which usually occurs closer to dawn. 

4.1. Conclusions 

This work has demonstrated that local temperature measurements show the best potential for generating high-
resolution maps of minimum temperature at farm scale. The addition of wind-speed and humidity 
measurements also improves models. With further validation and refinement of the methods, we believe this 
method has the potential to be applied across broad acre cropping areas of Australia. The results suggest that 
remotely sensed temperature is not acquired reliably-enough to make that suitable for this purpose.  

Further work should focus on utilizing terrain indices to contribute to optimizing the location of the local 
weather station(s). Also the selection of different terrain indices in MARS models for the two study sites 
suggests the possible value of devising a topographic typology of landscapes in relation to patterns of minimum 
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temperatures. Using only one to three loggers for a farm area (a few square km) appears to be adequate for 
farm scale mapping, but further work should contribute to quantifying model accuracy and developing 
recommendations for sensor placement locations. In addition, for further scaling-up to cover broad-acre 
cropping areas nationally, additional modelling should include proximity to coast and water bodies. 
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