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ABSTRACT 

The present article offers a binomial model replication of 
Merton’s (1969, 1973) model of portfolio selection allow-
ing volatility in continuous time.  Interestingly, the investor 
risk premium is modelled as a consequence of the mathe-
matics of risk itself (rather than that of investors setting 
prices at the start of each investment period).  The model 
reveals the inherent circularity of the CAPM as an explana-
tion of investor volatility-return preferences.  In the model, 
the outcome return on a risky asset is identified as having 
an idiosyncratic risk component.  The model thereby chal-
lenges the traditional interpretation of Markowitz portfolio 
theory, namely that idiosyncratic risk variations cancel. 
 

1 INTRODUCTION. 

The present paper introduces a binomial representation of 
Merton’s (1969, 1973) model for portfolio selection under 
uncertainty allowing continuous adjustment.   The applica-
tion of continuous time models to portfolio analysis by 
practitioners currently remains restricted – certainly when 
compared with the broad acceptance and application in 
practice (at least until more recently) of the traditional 
CAPM.  In part, this may be due to the inherent mathe-
matical nature of the continuous time analysis with a con-
sequently restricted intuitive conviction for its directives.  
The present paper may therefore have a role to play in ad-
vancing the application of models that allow continuous 
adjustment to investors’ portfolio selections – at least as 
complimentary to those that seek to model portfolio selec-
tion over a “single investment period”.   
 The model illuminates the interface of asset returns 
and portfolio volatility.  For example, the nature of the eq-
uity risk premium.  Thus a log-wealth utility investor is 
characterized as selecting across assets so as to maximize 
the portfolio’s geometric continuously-compounded 
growth rate.  The selected portfolio is thereby a function of 

the individual asset variances and covariances, but is inde-
pendent of the portfolio’s overall volatility.  In this sense, 
log-wealth utility is characterized as “risk neutral”.  Or, we 
can say, for log-wealth utility, the outcome risk creates its 
own reward. 
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 A novelty of the model is that the reward for risk 
(volatility) is recognized as the result of the mathematics of 
risk itself, rather than as the result of investors setting 
prices at the commencement of a one-period model (in ac-
cordance with required risk-return tradeoffs).  The outcome 
is that increases in idiosyncratic risk should lead to ob-
served increases in sampled periodic returns.  This predic-
tion appears to be consistent with Malkiel and Xu’s (1997) 
empirical findings.   
 The remainder of the article is arranged as follows.  In 
the following section, we present our exponential growth 
model for volatile markets; while the section thereafter 
presents the implications of a log-wealth utility for inves-
tors’ propensity to invest in such markets.  The final sec-
tion summarises the article.  

2      THE EXPONENTIAL (CONTINUOUSLY    
COMPOUNDED) GROWTH MODEL 

When the growth rate applied to a valuation is both nor-
mally distributed and applied continuously, the outcome 
valuation at the end of a time period may be represented as 
the starting valuation multiplied by exp(y) where y is nor-
mally distributed; or, stated alternatively, the starting 
valuation multiplied by exp(µ + x) where µ represents the 
underlying mean or “drift” exponential (continuously com-
pounded) growth rate for the period and x is normally dis-
tributed about zero with standard deviation (volatility), σ 
(see, for example, Dempsey, 2002).1       
 Such a distribution of growth outcomes exp(µ + x) 
over a time period may alternatively be represented as the 
outcome of a binomial process, repeated over a sufficiently 
large number N of time sub-periods.  In a binomial proc-
ess, $1 either grows to exp(µ/N + σ/√N) or declines to 
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exp(µ/N - σ/√N) with equal likelihoods over each time 
sub-period.2    The outcome of investing $1 in a portfolio 
comprising equity stocks and bonds (with normally dis-
tributed exponential growth rates) in combination with a 
risk-free asset, over a certain time period may therefore be 
represented as the outcome of applying the probability-
weighted operator in Figure 1 over a sufficiently large 
number of sub-time periods.   
 In Figure 1, µS, µB, σS and σB, represent, respectively, 
the mean continuously compounded growth rates and stan-
dard deviations about such rates for stocks and bonds; CSB  
represents the correlation coefficient between the exponen-
tial growth rates for stocks and bonds; and ωS, ωB repre-
sent, respectively, the proportions of the dollar invested in 
stocks and bonds, and hence (1- ωS -ωB). represents the 

proportion of the dollar invested in the risk-free asset; and 
rf  represents the risk-free continuously compounded 
growth rate.  The term ¼ (1 + CSB) in Figure 1 represents 
the probability of an up-movement of both stocks and 
bonds in conjunction, or a down-movement of both stocks 
and bonds in conjunction; and ¼ (1 - CSB) represents the 
probability of an up-movement of either stocks or bonds in 
conjunction with a down-movement of the other asset.   
 In order to investigate the outcome of applying the 
double-binomial operator of Figure 1 over successive time 
periods, we first identify the operator as the double-
binomial operator in the second column of Figure 2.  On 
solving between the two operator expressions, we have on 
a straightforward inspection, the relationships3: 

 
 
 

      ⎧  ln{ωS.exp(µS + σS) + ωB.exp(µB + σB) + (1- ωS - ωB).exp(rf )}  ⎫ 
µ0   =     ½    ⎨ +                        ⎬               (1) 
                    ⎩  ln{ωS.exp(µS - σS) + ωB.exp(µB - σB) + (1- ωS - ωB).exp(rf )}    ⎭ 

 
      ⎧  ln{ωS.exp(µS + σS) + ωB.exp(µB - σB) + (1- ωS - ωB).exp(rf )}    ⎫ 

µ1   =     ½    ⎨ +                           ⎬                (2) 
                    ⎩  ln{ωS.exp(µS - σS) + ωB.exp(µB + σB) + (1- ωS - ωB).exp(rf )}    ⎭ 

 
      ⎧  ln{ωS.exp(µS + σS) + ωB.exp(µB + σB) + (1- ωS - ωB).exp(rf )}   ⎫ 

σ0   =     ½    ⎨  -                            ⎬                (3) 
                    ⎩  ln{ωS.exp(µS - σS) + ωB.exp(µB - σB) + (1- ωS - ωB).exp(rf )}     ⎭ 

 
      ⎧  ln{ωS.exp(µS + σS) + ωB.exp(µB - σB) + (1- ωS - ωB).exp(rf )}    ⎫ 

σ1   =     ½    ⎨  -                           ⎬               (4) 
                    ⎩  ln{ωS.exp(µS - σS) + ωB.exp(µB + σB) + (1- ωS - ωB).exp(rf )}    ⎭ 

 
 
 

 At the end of a second period, the range of possible 
wealth outcomes is depicted as in the third column of Fig-
ure 2 (the combination of probability-weighted growth op-
erators leading to a particular wealth outcome is indicated 
in curly brackets).4  

 
 The double-binomial framework of Figure 2 repre-
sents our model for growth for a portfolio of risky stocks 
and risky bonds with a risk-free asset.  In the following 
section, we turn to consider the propensity of investors to 
invest in such growth.   
 

3     PORTFOLIO SELECTION BY EXPONENTIAL    
GROWTH SEEKING INVESTORS 

Osborne (1964) in his introduction of Brownian motion as 
a model of share price behaviour argues that equal inter-

vals of subjective sensation (such as pitch, brightness or 
noise) typically correspond to equal ratios of physical 
stimulus (for example, of sound frequency, or of light or 
sound intensity).  Consistently, he considers that when in-
vestors consider changes to their wealth, they remain con-
cerned with percentage changes to the reference point or 
base of their current or upgraded wealth status. The expo-
nential (continuously compounded) growth function 
exp(rT) captures the impact of applying a percentage 
change r continuously with certainty over a time period T 
to the upgraded wealth that is a consequence of the per-
centage change growth process itself.5  Consistently, we 
shall in the central part of this article take it that, when 
faced with a range of growth rate possibilities for their cur-
rent wealth $W0, investors value each possibility in direct 
proportion to its continuously compounded growth rate.  
That is:   
                                       U(rT) = rT                (5) 
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where U(rT) represents the utility afforded to the investor 
by the continuously compounded growth rate r applied 
with certainty over the time period T.  Equation 5 is 
equivalent to the statement that investors are subject to a 
log-wealth utility function (which follows allowing that 
when an investor’s current wealth W0 is subject to a con-
tinuously compounded growth rate r over a time period T, 
the outcome wealth is W0 exp(rT), so that the investor’s 
change in log-wealth utility is determined as ln[W0 
exp(rT)] - ln(W0) = rT, consistent with the utility derived 
from equation 5).  
  
 The Von Neumann and Morgenstern (1947) theorem 
states that investors seek to maximise portfolio expected 
utility UP as:  
             N 
                    U   =        Σ     p(xi ) u(xi  )              (6) P  
                       i = 1           
where p(xi) is the probability of each possible wealth out-
come xi, and u(xi) is the corresponding utility.  Combining 
equations 5 and 6, a log-wealth utility investor will seek to 
maximise expected utility (UP) at the end of a single time 
period in column 2 of Figure 2 as: 6

UP    =     ½ [(1+CSB).µ0 + (1-CSB).µ1]   which may be ex-
pressed:  

UP   =  µP         (7)
 

where:  µP  =   ½ [(1+CSB).µ0  + (1-CSB).µ1]        (8) 
represents the mean or probability-weighted continuously 
compounded growth rate over µ0 and µ1. 

 
From column 3 of Figure 2, the probability-weighted 

continuously compounded growth rate, and thereby the ex-
pected utility of outcomes, over two successive periods is 
observed as: ½ (1+CSB)2.µ0 + ½ (1-CSB)2.µ1  + ½ 
(1+CSB)(1-CSB).(µ0 + µ1) =  (1+CSB).µ0 + (1-CSB).µ1 = 
(with equation 8) 2µP.    Similarly, over N successive peri-
ods, the probability-weighted continuously compounded 
growth rate, and thereby the expected utility of outcomes, 
UP is expressed: 
                                    UP =  NµP

                (9) 
 
Thus the investor’s problem of maximizing the ex-

pected utility offered by an investment in stocks, bonds and 
the risk-free asset, reduces to that of maximizing the utility 
expression 9 with respect to the proportions ωS, ωB, (1-ωS-
ωB), respectively, held in these assets.  We therefore pro-
ceed to transform the utility expression 9 in terms of ωS 

and ωB.  To this end, we substitute back for the definitions 
of µ0 and µ1 (equations 1 and 2) in equation 8.  The utility 
(Up) offered by a portfolio combination of equity stocks, 
bonds and a risk-free asset over N periods may therefore be 
represented as:

 
  UP =  N  *  ¼ [ (1+CSB) .ln{ωS.exp(µS + σS) + ωB.exp(µB + σB) + (1- ωS - ωB).exp(rf) } 
                + (1-CSB). ln{ωS.exp(µS + σS) + ωB.exp(µB - σB) + (1- ωS - ωB).exp(rf) }        (10) 
             + (1-CSB). ln{ωS.exp(µS - σS) + ωB.exp(µB + σB) + (1- ωS - ωS).exp(rf) }  
               + (1+CSB). ln{ωS.exp(µS - σS) + ωB.exp(µB - σB) + (1- ωS - ωB).exp(rf) } ] 
 

Allowing exp(y) converges to 1 + y + ½y2 with a suf-
ficiently small y, while restricting the analysis to terms of 

order µS, µB, rf, σS
2, σB

2, equation 10 leads with suffi-
ciently short time increments (large N) to: 7 

 
    UP   =   N * ¼ [ (1+ CSB) .ln{ωS.(µS + σS + ½ σS

2  - rf)  + ωB.(µB + σB + ½ σB
2  - rf)  + 1 +rf } 

    + (1-  CSB) .ln{ωS.(µS + σS + ½ σS
2  - rf)  + ωB.(µB - σB + ½ σB

2  - rf)  + 1 +rf } 
    + (1-  CSB). ln{ωS.(µS - σS + ½ σS

2  - rf)   + ωB.(µB + σB + ½ σB
2  - rf)  + 1 +rf } 

    + (1+ CSB). ln{ωS.(µS - σS + ½ σS
2  - rf)   + ωB.(µB - σB + ½ σB

2  - rf)  + 1 +rf }] 
 
            = N * ¼ [(1+CSB).ln{1+2ωS.(µS + ½σS

2 - rf) + 2ωB.(µB + ½ σB
2 - rf) + 2 rf

                                                                      - ωS
2.σS

2  - ωB
2.σB

2   - 2ωS.ωB. σS.σB  } 
                       +  (1-CSB).ln{1+2ωS.(µS + ½σS

2 - rf) + 2ωB.(µB + ½ σB
2 - rf) + 2 rf

           - ωS
2.σS

2  - ωB
2.σB

2    + 2ωS.ωB. σS.σB  }] 
 
   which (allowing ln(1 + y) converges to y with sufficiently small y) may be expressed: 
  
    UP =  N * [ωS.(µS + ½ σS

2) + ωB.(µB + ½ σB
2) + (1- ωS - ωB).rf  

       –  ½ ωS
2.σS

2  -  ½ ωB
2.σB

2    -  CSB. ωS.ωB. σS.σB ]                       (11) 
  
   or as UP =  NµP (equation 9) where: 
           µP  =   ωS.(µS + ½ σS

2) + ωB.(µB + ½ σB
2) + (1- ωS - ωB).rf  
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                                     –  ½ ωS

2.σS
2  -  ½ ωB

2.σB
2    -  CSB. ωS.ωB. σS.σB                            (12) 

 
On identifying: 

 
(i) the continuously compounded growth rate Ri that de-
livers asset i’s expected (or average) wealth outcome as: 

Ri   =    µi +  ½ σi 
2                        (13) 

(as Black and Scholes, 1973; cf, for example, Jacquier, 
Kane and Marcus, 2003),  
 
(ii) the growth rate RP that delivers the portfolio’s expected 
wealth outcome as the weighted-average of the portfolio’s 
asset growth rates, Ri:  

RP  =  ωS. RS + ωB.RB  + (1- ωS - ωB).rf            (14) 
(with RS, RB defined by equation 13, i = S, B),  
 
(iii) σP

2 as the outcome variance of the portfolio’s asset 
growth rates: 

σP
2 =  ωS

2.σS
2  + ωB

2.σB
2   + 2 CSB.ωS.ωB.σS.σB,  (15) 

 
the portfolio utility expression 11 is expressed:  

UP   =   N (RP  –  ½ σP
2)             (16) 

(which corresponds in continuous time with the expression 
for discrete time periods, for example, Cuthbertson, 1997, 
pg 55).   
 

The terms between addition signs in equation 11 in-
crease linearly with time (see footnote 2).  It follows that 
the expression 11 is independent of the number of sub-
periods (N) over which the investment time horizon is di-
vided.  It follows similarly that utility increases linearly 
with the allocated time horizon – and hence that utility per 
period is independent of the investor’s time horizon.  The 
analysis thereby accords with Samuelson’s arguments 
(1963, 1989, 1994), that a log-wealth utility investor’s 
portfolio choice is indifferent to the investor’s time-
horizon.

The solution to maximizing the utility equation 11 
with respect to ωS and ωB is identified by differentiating 
the expression with respect to both ωS and ωB and setting 
each outcome equation equal to zero.  On differentiating 
the equation first with respect to ωS, we obtain:    

µS  +  ½ σS
2  - rf   - ωS.σS

2  -  CSB.ωB. σS.σB   =   0 
which on identifying the covariance σS,B  between asset 
growth rates on stocks and bonds as: 

        σS,B    =  CSB.σS
 .σB                            (17) 

may be expressed: 
RS - rf       -   ωS. σS

2     -   ωB. σS,B
          =   0         (18a) 

 
Similarly on differentiating equation 11 with respect to 

ωB, we obtain: 
RB  - rf   -   ωS. σB,S

    -  ωB. σB
2         =   0            (18b) 

 

With the covariance [σi,P
 (i = S, B)] of the exponential 

growth rate for asset i with the exponential growth rate for 
the investor’s portfolio P (comprising stocks, bonds and 
the risk-free assets in proportions, ωS, ωB, 1-ωS -ωB) identi-
fied as:  

σi,P
  =  ωS. σi, S

   +  ωB. σi, B
equations 18 are expressed: 

RS     -    rf        =    σS,P  
               (19a) 

 RB   -    rf      =    σB,P
              (19b) 

 
On multiplying equation 19a by ωS and equation 19b 

by ωB, and adding the outcome equations, we arrive (with 
equation 14) at: 

 
    [RP  - rf ]  =   σP

2                      (20) 
where σP

2  is the variance of the market portfolio.  Alterna-
tively, equations 18 for the optimal weights [ωS, ωB] may 
be expressed in matrix notation as: 

  W  =  Ω-1  R               (21) 
where: 
W  =  the vector of weights [ωS, ωB] for the risky assets S  
          and B, 
Ω   = the variance-covariance matrix: 

⎡  σS
2         σS,B

   ⎤ 
        ⎢                    ⎥ 

⎢  σB,S
         σB

2   ⎥ 
                           ⎣                    ⎦ 
for the risky assets S and B, and 
R  =   the vector of expected returns over the risk-free rate 
[RS- rf , RB- rf ] for the risky assets S and B. (Equation 21 
represents Merton’s (1969) result, his equation 60.) 8

For simplicity, the above analysis has been developed 
for the asset classes (S), bonds (B) and a risk-free asset. On 
subdividing the asset classes (S, B) into component assets, 
the analysis generalizes straightforwardly to a portfolio of 
N risky assets. 

In accordance with equations 21, individual investors 
make portfolio allocations ωi [i = S, B] (the dependent 
variables) dependent on their expectations for asset growth 
rates Ri [i = S, B] and their risk as identified by the covari-
ance matrix of asset growth rates (the independent vari-
ables).  The CAPM follows on a reconfiguration of the re-
lationship between the dependent and independent 
variables in equations 21, combined with the assumption of 
homogenous expectations, for then all investors hold the 
market portfolio and equations 19 are expressed: 

RS     =    rf        +    σS,M
                (22a) 

RB   =    rf      +    σB,M
               (22b) 

 
where σi,M

  represents the covariance of the growth rate Ri 
(i = S, B) with the growth rate of the market portfolio RM 
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(inclusive of the risk-free asset).  Equation 20 then be-
comes: 

    [RM  - rf ]  =   σM
2                    (23) 

 
where σM

2  is the variance of the market portfolio.  Thus 
with an asset’s beta βi defined as: 

 
      βi = σi, M  / σM

2               (24) 
we may write equations 22 as: 

 
  Ri   =   rf    +  βi * [ RM  - rf]   (i = S, B)                 (25) 

 
which is the traditional form of the CAPM applied to con-
tinuously compounded growth rates (as Merton, 1973). 

The essential equations of this section relating to in-
vestor log-wealth utility and the outcome risk-return char-
acteristics of portfolio composition may conveniently be 
summarised as Table 1. 
 

Table 1: The Fundamental Equations of Investor Utility  
              and Portfolio Composition 
 
                  UP   =   RP  –  ½ .σP

2
                           (16) 

                  [ RP - rf ]   =   σP
2                      (20) 

                  W  =  Ω-1  R                             (21) 
           Ri   =   rf    +  βi * [ RM  - rf]        (25) 
 
For a “two risky assets (Stocks, Bonds) one risk-free asset” 
portfolio, equation 16 (with equations 13, 14 and 15) ex-
pands as:       
UP   =   ωS.(µS + ½ σS

2) + ωB.(µB + ½ σB
2) + (1- ωS - ωB).rf  

  –  ½ c [ωS
2.σS

2  -  ½ ωB
2.σB

2    -  2.CSB. ωS.ωB. σS.σB ]     
(12) 

and equation 21 expands as: 
  RS - rf       -    (ωS. σS

2     +   ωB. σS,B
 )         =   0    (18) 

  RB  - rf   -    (ωS. σB,S
    +  ωB. σB

2 )          =   0 
or: 

 RS  - rf      =   σS,P                 (19)
         RB - rf     =  σB,P 
 

The implications of our above observations are sum-
marised as follows:: 

1. Log-wealth utility investors: maximizing mean 
exponential return. For a log-wealth utility investor, 
maximizing a portfolio’s utility reduces to choosing portfo-
lio compositions ωi so as to maximise the portfolio’s mean 
exponential growth rate as represented by expression 12.  
The solution of which is determined by equations 21.  Thus 
notwithstanding that the outcome utility offered by a port-
folio is a function of the risk-return characteristics across 
the portfolio’s component assets, the outcome utility is ac-
tually independent of the portfolio’s overall risk as meas-
ured by the standard deviation, (σP) about the portfolio’s 
mean exponential growth rate (µP).   

 
2. Convolution of the CAPM.    The set of equations 

21 determine an investor’s portfolio composition (ωS and 
ωB) in terms of the asset (S and B) returns, their variances 
and co-variances.  The CAPM has been derived by refigur-
ing the equilibrium conditions 21 with an asset’s return Ri 
as the dependent variable.  But we should be aware that an 
asset’s beta (equation 24) itself relates linearly to the as-
set’s outcome return possibilities: double an asset’s out-
come return possibilities, and we thereby double the co-
variance of such returns with the market’s returns – and 
hence we double that asset’s beta.  And such new beta now 
works to “explain” the asset’s higher returns in the first 
place.9   Roll (1977) has drawn attention to this inherent 
circularity of the CAPM.   
 

3. Idiosyncratic risk.  In the CAPM (equation 25) the 
continuously compounded growth rate, Ri that generates 
the expected wealth outcome for asset i, may be repre-
sented (equation 13) as Ri = µi + ½ σi

2, where σi  represents 
that asset’s total (market plus idiosyncratic) volatility about 
the stock’s mean growth rate, µi.  Thus the CAPM ex-
plained return has an idiosyncratic component.  Malkiel 
and Xu (1997) observe that largely unpredicted sharp in-
creases in idiosyncratic volatility occurred in US stocks 
over the period 1963-1994 of their study.  They discover 
that portfolios on idiosyncratic risk from a low of 5.0 per-
cent monthly volatility (σmin) to 12.5 percent monthly vola-
tility (σmax) give rise to an annualised 7.0 percent return 
difference across such portfolios.  Such difference actually 
understates the difference: ½[σmax

2 -  σmin
2]*12 = 

½[(0.125)2 – (0.05)2]*12 = 8.0 percent (Dempsey, 2002).10   

4     CONCLUSION 

The paper has presented a binomial model for asset growth 
with volatility. Allowing a log-wealth utility, the model 
provides for the optimal allocation of assets in an invest-
ment portfolio.  A feature of the model is that the equity 
risk premium is accounted for by the internal mathematics 
of risk over continuous time - rather than by the concept of 
investors setting prices at the commencement of a one-
period investment time frame as in the CAPM.  In which 
context, portfolio idiosyncratic risk is recognised as a 
component of returns.  Notwithstanding, the formulation is 
actually consistent with the CAPM in continuous time.  It 
has been observed that the model’s predictions fit quite 
well with Malkiel and Xu’s (1997) empirically observed 
relationship between US equity performances and idiosyn-
cratic risk.   
 
 It is noted that the model is consistent with the frame-
work developed by Merton (1969, 1973) and with 
Samuelson’s arguments (1963, 1989, 1994) that portfolio 
choices can be indifferent to the investor’s time-horizon.  It 
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is also consistent with Dempsey’s (2002) model applied to 
a single risky asset combined with a risk-free asset.  

 NOTES 

1. The assumption that stock market growth rates are 
normally distributed is broadly justified by the evidence of 
past stock price performance (for example, Fama, 1976, ch. 
2; and more recently, Jones and Wilson, 1999); while Fama 
(1976) and Ibbotson Associates (2001) observe that an a 
priori expectation for a normal distribution is reinforced by 
the mathematics of selection as captured by the Central 
Limit Theorem.
 
2. Hence the mean continuously compounded return 
grows linearly with time while the standard deviation about 
such return grows as the square-root of time.   
 
3 For example. we have on comparing across Figures 1 
and 2, the first component of the operator as: 
¼(1+CSB){ωS.exp(µS + σS) + ωB.exp(µB + σB) + (1- ωS - 
ωB).exp(rf )} =  ¼(1+CSB) exp(µ0 + σ0),  and the final com-
ponent of the operator as: ¼(1+CSB){ωS.exp(µS - σS) + 
ωB.exp(µB - σB) + (1- ωS - ωB).exp(rf )} =  ¼(1+CSB) 
exp(µ0 - σ0).  Taking logs of both sides of the two equa-
tions and adding yields equation 1, with similar manipula-
tions for equations 2 – 4. 
 
4. For example, the third listed wealth outcome in col-
umn 3, namely, 1/8 (1+CSB).        (1-CSB).exp(µ0 + σ0 + µ1 - 
σ1) {1, 3}, is the outcome of the probability-weighted op-
erator:          ¼ (1+CSB).exp(µ0 + σ0) {1} either followed or 
preceded by the probability-weighted operator: ¼ (1-
CSB).exp(µ1 - σ1) {3} (as depicted by the arrows in Figure 
2).   
 
5. A certain plausibility argument can be made for the 
natural log-wealth utility function in continuous time.  To 
see this, consider that the continuously applied growth rate 
r followed by the rate –r for equal durations, effectively 
cancel.  Thus it appears reasonable to stipulate that the 
positive utility U(r) of the continuously applied growth rate 
r should equate with the negative utility U(-r) of the same 
continuously applied growth rate –r.  Now, set r* as the 
benchmark utility for some continuously compounded 
growth rate r* (so that U(r*) = r* for such r*).  If now we 
allow that U(2r*) does not necessarily equal 2r*, let us say, 
is less than 2r*, we are obliged to concede that U(-2r*) is 
greater (ie, less negative) than -2r*.  In which case we have 
the seemingly implausible outcome that investors are sub-
ject to decreasing added utility with each additional unit of 
wealth accumulation, while remaining subject to decreas-
ing subtracted utility with each additional unit of wealth 
erosion. 
 

6. The utility of the outcomes in column 2 of Figure 2 
(UP) is determined as: UP =  ¼(1+CSB).ln[exp(µ0 + σ0)] + 
¼(1-CSB).ln[exp(µ1 + σ1)] + ¼(1-CSB).ln[exp(µ1 - σ1)] + 
¼(1+CSB).ln[exp(µ0 - σ0)]  =   ½ [(1+CSB).µ0 + (1-CSB).µ1],  
as in the text.   
     
7. Standard deviations reduce as the inverse of the 
square-root of time whereas continuously compounded re-
turns reduce as the inverse of time (see footnote 2).  Hence 
it is appropriate to allow terms as one order higher for 
standard deviation than for continuously compounded re-
turns.       
 
8. Our result could have been obtained equally by differ-
entiating equation 10 with respect to ωS and ωB and setting 
the outcomes equal to zero.  Differentiating with respect to 
ωS we have: 
                     (1+CSB) . [exp(µS + σS) - exp(rf)] 
 ______________________________________________________________ 

     ωS.exp(µS + σS) + ωB.exp(µB + σB) + (1- ωS - ωB).exp(rf) 
 

(1-CSB) . [exp(µS + σS) - exp(rf)]
    +   ___________________________________________________________________ 

      ωS.exp(µS + σS) + ωB.exp(µB - σB) + (1- ωS - ωB).exp(rf) 
 

(1-CSB) . [exp(µS - σS) - exp(rf)] 

    +  ___________________________________________________________________ 

      ωS.exp(µS - σS) + ωB.exp(µB + σB) + (1- ωS - ωB).exp(rf) 
 

(1+CSB) . [exp(µS - σS) - exp(rf)] 
   +    __________________________________________________________________ 

       ωS.exp(µS - σS) + ωB.exp(µB - σB) + (1- ωS - ωB).exp(rf) 

 

 =  0 
                          
which follows on observing that when y = ln [f(x)], where 
f(x) is a continuous function of x, the partial differentiation 
of y with respect to x is determined as: δy/δx  =  [δ f(x) / 
δx ] / f(x).    
 
 Allowing the relationship exp(y) = 1 + y + ½y2, for 
each continuously compounded function over a sufficiently 
short time period, while restricting the analysis to terms of 
order µS, µB, rf, σS

2, σB
2 (footnote 7) the above equation is 

expressed: 
    [ (1+CSB) . [ µS + σS + ½ σS

2  - rf   - ωS. σS
2     - ωB. σS

   σB
 ] 

+  [ (1-CSB) . [ µS + σS + ½ σS
2  - rf  - ωS. σS

2     + ωB. σS
   σB

 ] 
+  [ (1-CSB) . [ µS - σS + ½ σS

2  - rf   - ωS. σS
2     + ωB. σS

   σB
 ] 

+  [ (1+CSB) . [µS - σS + ½ σS
2 - rf  - ωS. σS

2  - ωB. σS
   σB

 ]     
=   0 
which yields: 
 µS  +   ½ σS

2  - rf     -  ωS. σS
2        -  ωB. CSB.σS

 .σB
        =   0 
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 On identifying (i) RS = µS  + ½ σS

2 (equation 13) and 
(ii) the covariance between assets stocks and bonds as σS,B 
=  CSB.σS

 .σB (equation 17), we can write the above equa-
tion as:    
RS  - rf     -    ωS. σS

2        -   ωB. σS,B        =   0 
 Similarly on differentiating equation 10 with respect to 
ωB, we obtain: 
RB  - rf     -   ωB. σB

2        -   ωS. σB,S        =   0 
which are equations 18 of the text.   
 
9. There are potentially significant implications for tradi-
tional measures of portfolio management performance 
here.  Suppose, for example, we have two stocks which of-
fer identical claims on a firm, but that the price of one 
stock has remained and is expected to remain half that of 
the other.  It follows that the potential dividend yields (and 
hence we assume returns) for the lower-priced stock are 
twice as for the higher-priced stock.  The standard devia-
tion of potential returns – and hence beta - for the lower-
priced stock are therefore twice as for the higher-priced 
stock.   Consider now that a portfolio manager A provides 
his client with a portfolio of the low-priced stocks, while 
portfolio manager B provides her client with a portfolio of  
(half as many) of the high-priced stocks (for the same in-
vestment outlay).  Clearly portfolio manager A has the bet-
ter performance.  Notwithstanding, standard CAPM per-
formance ratios, for example, Treynor’s ratio as: 
       [portfolio return – risk-free deposit rate]        RP  -  rf 
T =   _____________________________________________         =   ________ 

                           portfolio beta              βP

 
and Sharpe’s ratio as: 
 
        [portfolio return – risk-free deposit rate]      RP  -  rf 
S =    _____________________________________________        =   _________ 

      total portfolio volatility              σP
 
with (to make the point) an rf  effectively close to zero, are 
identical across both lower- and higher-priced stock portfo-
lios, with the outcome that the two portfolio managers are 
pronounced as having performed equally for their clients 
on a risk-return basis. 
 
10. The portfolio’s periodic arithmetic return (ARP) – cal-
culated for a sequence of N (equally) discrete periodic re-
turns (ri) as: 
                   N 
                ARP   =  1/N  ∑  ri 
                                                 i = 1 
 
[where each ri = Wi/Wi-1 - 1, Wi = outcome wealth at end of 
period i] - and the standard deviation about such return (SP) 
as measured by Malkiel and Xu do not strictly identify the 
portfolio’s mean continuous growth rate (µP) and the stan-
dard deviation about such rate (σP).  The theoretical rela-
tionships are: µP = ln(1+ARP) – ½ ln{1 + [SP/(1+ARP)]2}; 
and σP

2 = ln{1 + [SP/(1+ARP)]2}(for example, de la Grand-
ville, 1998, Ibbotson Associates, 2001, Jacquier, Kane and 
Marcus, 2003). 
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