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Abstract: In an environment of massive environmental degradation it is very important that we get our basic 
assumptions and tools correct.  Whether or not we are able to perceive the environmental problems being 
created, and whether we are able to respond effectively will depend on what evidence we can muster for 
environmental degradation, how we explain the phenomena we observe and how we plan, predict the 
outcomes of our actions and set policy. Hitherto we have tended to let theory drive observation rather than 
the reverse. There has been much emphasis on Gaussian statistics, sampling power, analysis of variance and 
various forms of dynamical simulation models. Effort has been placed on controlling “noise” in data rather 
than trying to understand and model it.  

Recent analyses of water quality data have revealed that what was hitherto thought to be noise in the data is 
actually small-scale information. The data reveal multi-fractal behaviour, and provide evidence for self-
organised criticality and strong non-linear coupling at small scales. Different nutrient pools and biological 
components exhibit differing turnover times and contingent histories. Ignoring this small scale information 
means that many (if not most) ecological data are probably collected at inappropriate scales and are seriously 
aliased. Small scale interactions can have far reaching consequences in non equilibrium systems. 

The realisation that all water bodies contain much contingent small-scale information raises a serious 
question of indeterminism and questions the ability of widely accepted models to predict the outcomes of 
land use change on receiving waters. Models and predictions have been based around the properties of means 
and central tendencies only at scales in the region from hours to weeks – these are now seen to be an insecure 
basis for prediction and management.  

Techniques of data based modelling use the data itself to allow for the inclusion of prior experience and to 
define more parsimonious predictive models. Use of such models recognises the partial nature of our 
knowledge and requires adequate monitoring and adaptive management programs. Agile institutions and 
adequate data collection programs are the only solution to environmental management in this environment. 
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1. INTRODUCTION 

Just as in other areas of human endeavour the 
basic arguments and philosophical underpinnings 
of ecology (the fundamental science of 
environmental management) are changing. The 
basis of ecology lies in theories of the dynamics 
of populations and communities of organisms, 
based largely on nineteenth century ideas of 
plenitude and equilibrium (Kingsland 1985, 
McIntosh 1985). Much of ecological theory has 
been based around the role of competition in 
equilibrium communities (e.g. May 1973). More 
recently the sheer complexity of ecosystems and 
landscapes is being addressed with a range of 
“neutral” models which, rather than competition, 
stress the role of dispersal, chance and regional 
evolutionary histories (e.g. Hubbell 2001).  

Ecosystems are complex entities which show 
dynamic behaviour and spatial and temporal 
heterogeneity (Wu and Loucks 1995), 
discontinuities and multiple equilibria at a range 

of scales (O’Neill 1999). They display many of 
the properties attributed to Complex Adaptive 
Systems (CAS, Harris 1998) and show self-
organised criticality (Sprott et al. 2002). Many 
properties of landscapes show fractal-like 
variability across a wide range of temporal and 
spatial scales (Lohle and Li 1996, Sole et al. 
1999, Li 2000, Brown et al. 2002). With 
variability showing self similar properties across 
many scales, prediction, particularly for things 
like community composition and dynamics, is a 
matter of some difficulty (Lawton 1999). 

Fox Keller (2002) has recently noted that there is 
a strong distinction between the philosophy and 
practice – between the status of evidence and 
explanation – in physics and biology. In physics, 
theory has precedence; evidence is collected to 
confirm or refute the fundamental theoretical 
basis of the science. In biology on the other hand, 
the evidence has precedence over theory – so that 
biological explanations are contingent and may 
take the form of “just so stories”, contingent 
explanations or descriptions of natural history 



(Gould 1991). Ecological theories are provisional; 
but we are beginning to shift away from theory 
laden “physics envy” to a more sensitive reliance 
on what the data actually tells us.  

Catchments, land use and water quality 
Introduction 

Catchments are the natural biophysical units in 
which we have made massive changes in land use 
for agriculture and urban development, altered the 
hydrology through the building of dams and 
weirs, extracted water for irrigation and urban 
use, fragmented habitats and reduced biodiversity. 
All this has had major effects on water quality 
and riverine ecosystems. Throughout the world 
rivers are degraded, species are being lost, flows 
are reduced and water quality is degraded. There 
are few pristine rivers left around the world – in 
addition to conservation and preservation of what 
is left, one of the major challenges is now 
restoration of our degraded catchments and rivers. 

If restoration is to be attempted there is an urgent 
need to better understand and explain the linkages 
and pathways between land use, soil nutrient 
status and water quality. There is already some 
strong evidence for control of water quality 
through small scale interactions with the pore 
structure and microbial processes in soils which 
are poorly understood (e.g. Harris 1999, 2001, 
2002a, b). Soils and their condition are closely 
linked to water quality (e.g. Engstrom et al. 2000, 
Markewitz et al. 2001, Foy and O’Connor 2002). 

Non-equilibrium systems – variability at a 
range of scales 

Aquatic ecosystems are particularly useful as 
model ecological systems because of the wide 
range of spatial and temporal scales encountered 
– scales range from the large and slow (kilometres 
to decades) in catchments to the small and fast 
(micrometres to seconds) in the water. 
Catchments appear to have fractal properties, with 
the concentrations of elements in stream flow 
showing fractal scaling properties and memories 
of events at all scales (Kirchner et al. 2000). 
Ecosystems show variability at a wide range of 
scales – from microns and millimetres to decades 
and thousands of kilometres (e.g. Harris 1980, 
Steele 1995) so that the choice of scales of 
observation is usually arbitrary and chosen on the 
basis of either human convenience or the 
availability of funding. Ecological data are 
notoriously noisy and flout the standard statistical 
assumptions of Gaussian distributions and 
constant means and variances. This has caused 
problems with interpretation. 

The little we know about catchments and their 
receiving waters shows that there are significant 

periodicities in climatological drivers of these 
systems at inter-annual, seasonal, 40-50 days, 5-
10 day, 1-2 days and diurnal scales (see Harris 
1980, 1987, Harris et al 1988, Harris and Baxter 
1996). Much of the higher frequency end of the 
spectrum is very poorly understood because much 
of the data we collect is collected weekly at best, 
and often more infrequently than that.  

So the first preconception that we need to change 
is the idea that ecosystems, particularly 
catchments, rivers and estuaries are equilibrium 
systems. Disequilibrium occurs over a range of 
scales, but hitherto we have never appreciated the 
importance of small scale disequilibrium on our 
world view. 

What is the evidence for small scale self-
organised criticality and non-equilibrium? 

Richard Vollenweider (as yet unpublished) has 
developed a technique of moving correlations to 
display the small scale correlations within water 
quality data sets. The technique is identical in 
concept to the moving average technique in time 
series analysis but uses moving correlations 
instead of moving averages. Vollenweider’s 
motive (personal communication) was to attempt 
to find correlations within daily time series of 
water quality data from the Adriatic Sea where he 
could find no statistically significant correlations 
between the entire time series, but might have 
reasonably expected to do so on mechanistic 
grounds. He was, for example, puzzled that he 
could find no correlation between chlorophyll and 
dissolved oxygen. 

 

Vollenweider discovered that there were strong 
correlations between the data sets during short 
epochs but that the sign of the correlation changed 
along the length of the series. Therefore, overall 
there was no significant relationship because the 
epochs of reversed sign cancelled out. Harris and 
Trimbee (1986) also noted this phenomenon but 
did not realise the significance of the observation 
at the time. We have now examined numerous 
time series of water quality data and they all show 
this phenomenon. Figure 1 displays the results of 
the analysis of water quality data from the Avon 
River in WA. 

 

Analysis of numerous data sets (Harris, Haygarth 
and Heathwaite in preparation) shows a number 
of consistent phenomena: 

 

• All water quality data sets show strong and 
changing internal correlations over short time 
and space scales 



• These correlation patterns occur at all scales 
examined – from data collected at scales of 
minutes to weeks 

• These correlations do not arise from random 
data sets – the data are consistently non 
random as long as the sampling interval is 
short enough to resolve the true dynamics 

• The water quality data sets show evidence of 
multi-fractal variability and power law 
statistics 

• Aliasing is a severe problem in weekly water 
quality data sets 

These data most probably arise from small scale 
reaction-diffusion interactions between 
catchments, throughflow and runoff, between 
biological and chemical processes at small scales. 
Others (Hatje et al 2001, Seuront et al 2002) have 
recently noted the prevalent and importance of 
small scale variability in water quality data and 
have offered similar explanations. Seuront et al. 
(2002) suggested that “the observed small-scale 
nutrient patches could be the result of complex 
interactions between hydrodynamic conditions, 
biological processes related to phytoplankton 
populations, and the productive efficiency of 
bacterial populations”. The importance of small 
scales variability has previously been under 
estimated. Together these new results may be 
taken as evidence of self-organised criticality in 
the interaction of physical, chemical and 
biological processes in catchments and runoff. 
There is an emerging literature that studies SOC 
phenomena and the emergence of large scale 
patterns from small scale interactions in 
ecosystems (Wootton 2001, Bjornstad et al 2002). 

Moving Correlation Analysis
Swan River data - 4 week moving window

-1

-0.5

0

0.5

1

1 18 35 52 69 86 103120 137154171 188 205222

weeks from Apr 1996

R2

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

TN

 
 

Figure 1. The results of Vollenweider’s moving 
correlation analysis on total N and total P data 
from the Swan River (thick line). Whilst the 

correlation is mostly positive there are significant 
periods when the correlation is strongly negative. 

The thin line is the time series of total nitrogen 
(mg.l-1). Positive correlations between TN and TP 

mostly occur during periods of high TN (and high 
flows). These data were kindly supplied by 

Malcolm Robb of the (then) Water and Rivers 
Commission. (With this moving correlation 

kernel, statistically significance (p<0.05) occurs 
with R2 > + or - 0.84) 

y = -1.9547x - 1.769
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-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0

log magnitude

lo
g 

fre
qu

en
cy

 
 

Figure 2. Total phosphorus data from the Swan 
River. Power law plot of the frequency and 

magnitude of changes in the weekly time series 
data from Walyunga station (first differences). 

From microns to continental scales, there is 
contingency and indeterminism brought about by 
the vagaries of dispersal and environmental 
heterogeneity. Different processes come to 
predominate at different levels in the hierarchy 
and “more is different” Anderson (1972). While 
biogeochemistry sums processes across spatial 
and temporal scales by looking at entities 
watersheds, at very small scales microbial 
processes are patchy and contingent. Riverine 
nutrient inputs come from small scale interactions 
between the landscape and the river (Alexander et 
al 2000).  

Why do disequilibrium, non-linear coupling and 
indeterminacy over a wide range of scales shake 
the foundations of ecological data analysis, 
variance analyses and dynamical simulation 
modelling? Analysis of much water quality data 
has, hitherto, been based on the use of mean 
values because it has been assumed that the 
observed variability was merely noise and the 
parameters were uncorrelated. 

Frequentist approaches to ecological data have 
focussed more on controlling and modelling 
statistical variability – believing the variability to 
be random noise. Richard Vollenweider’s 
analyses have suggested that the probability 
density functions and higher moments are not 
Gaussian and that the small scale cross-
correlations and co-variances are highly 



significant. Small scale indeterminacy, fractal 
variability and emergence have major 
implications for modelling and prediction because 
the antecedent conditions for each patch of water 
at small scales are unknowable but may, 
nonetheless, have large scale emergent 
repercussions.  

Systems which show multi-fractal variability and 
evidence of self-organised criticality – including 
small scale indeterminacy - mean the death of 
“phenomenological” models based on means and 
central tendencies. In such systems it is extremely 
difficult to define a model for any particular 
phenomenon because of emergence and a lack of 
data. A hierarchy of models may be constructed – 
but any model at any level is not only scale 
dependent but also an averaging of lower level 
processes. The question must be well posed and 
the relevant data must be available at the correct 
scale – even then small scale contingency; multi-
fractal scaling and non-linear coupling render 
predictions based on averages inherently unsafe.  

Ecological explanation and prediction 

Dynamical simulation models are large sets of 
differential equations describing ecological 
processes, major functional groups and their 
interactions. Dynamical simulation models of 
aquatic ecosystems are, in fact, little changed 
since the work of Riley et al. (1949). The 
approach has been widely used; e.g. the Great 
Lakes models of Scavia, Thomann and Di Toro 
(Thomann et al 1975, 1976) were the basis of the 
phosphorus reduction programs in the Great 
Lakes, and the Port Phillip Bay model of Murray 
and Parslow (Harris et al. 1996, Murray and 
Parslow 1999a, b) was the basis of the 
recommendations about nutrient loading 
reductions in that coastal lagoon. Other examples 
could be quoted.  

The selection of the processes modelled is based 
on experience and the “state of the art” at the 
time. These models can either be used 
heuristically to synthesize knowledge and to 
guide further data collection or they can be used 
to predict the outcomes of management action 
and other forms of human intervention. Either 
way they form the basis of explanations of 
ecological pattern and process. Distributions, 
processes and interactions which vary in space 
and time are averaged and simplified. 
Deterministic equations replace probabilistic and 
contingent distributions. The models are strongly 
scale dependent. The models represent noisy, 
non-equilibrium systems with variability at a wide 
range of temporal and spatial sales. No attempt is 
made to represent all the species or interactions, 
relying instead on a “lumped” representation of 
the ecosystem and its constituent species. 

The data used in attempts to calibrate and validate 
such models is also partial and noisy. Any set of 
ecological data is a sample from the normal 
spatial and temporal variability encountered in 
natural systems. Most ecological data are 
therefore aliased – they are, in effect, sparse 
samples which are unrepresentative of the full 
spectrum of natural variability (Clark et al. 2001). 
Thus we have the problem of evidence based on 
partial information and of explanations based on 
unrepresentative, deterministic dynamical models.  

Since the early days there have been worries over 
the philosophical basis of dynamical simulation 
modelling (Berlinksi 1976) and the ability to 
calibrate and validate such models (Oreskes et al. 
1994). There is always much hand waving and 
lack of rigour in comparisons between water 
quality data and model outputs (usually in the 
form of visual comparison of time series plots of 
data and model predictions). There is insufficient 
objective statistical analysis of model bias and the 
fit to the data. Of course, an ability to fit the data 
does not, in itself, make any definitive statement 
about the adequacy of the model structure or its 
parameterisation (Klemes 1986, Rykiel 1996). 
There “may be more than one set of 
parameterisations and more than one set of 
parameter values that can give equally acceptable 
predictions of the observational data available” 
(Beven 2000) This is not a new debate and further 
references may be found in (Beven 2000). 

One thing that has become clear in recent years is 
that the predictive properties of simulation models 
are related to their structure (in terms of the 
network of links). This insight has emerged from 
graph and network theory (Buchanan 2002). Thus 
the ability of dynamical simulation models to 
predict ecological outcomes is a function of the 
level of abstraction and the supposed network of 
key interactions – all of which are abstractions 
from a much more complex natural entity. 
Dynamical models rarely have the kind of 
network structure seen in real world networks – 
which are usually hierarchical and scale-free 
(Buchanan 2002, Ravasz et al. 2002). Differing 
models, with differing structures may well give 
quite different dynamical behaviour – but is the 
data sufficient to distinguish between the various 
models? 

Raupach et al. (2002) have recently described a 
method for evaluating the bias in such models. 
The reliability of the aggregated model depends 
critically on the accurate estimation of the means, 
variances and co-variances of model variables and 
parameters. Raupach et al. (2002) presented a 
Taylor expansion model for critical functions 
which shows that considerable bias may be 
introduced if the third, and higher order terms, are 
large. i.e. if there are significant non Gaussian 



distributions in the probability density functions 
of the values and the co-variances are significant. 
As Raupach et al. (2002) note, if estimates of the 
means, variances and co-variances are not 
available “attempts to improve the performance of 
an aggregated model by further measurement of 
only the mean variables and parameters are futile, 
because measurements of mean quantities cannot 
eliminate bias arising from the interaction 
between model nonlinearity and small-scale 
variability”. 

Simulation models are only capable of modelling 
the central tendencies in the data – not the actual 
small scale variability (Harris 1999b). What 
Vollenweider’s work has revealed is that there is 
much meaningful small scale variability – it is not 
mere noise. While dynamical simulation models 
of estuaries and lakes can show large scale 
hysteresis effects (Harris et al. 1996, Murray and 
Parslow 1999a, b) which are quite realistic 
(Scheffer et al. 2001) the worrying thing about 
Vollenweider’s result is the proof of the 
widespread existence of small scale non-linearity 
and cross-correlations between parameters which 
make Raupach’s concerns highly valid ones.  

What the small scale dynamics also shows is that 
fractal variability and non-linearity at small scales 
may be sufficient to render the predictions of 
simulation models unsafe at larger scales or 
higher levels. Clearly there are fundamental 
limitations to our ability to measure and predict 
the contingent variability in catchments, rivers 
and estuaries. We know that stochastic events can 
lead to hysteresis effects and state shifts in natural 
ecosystems (Scheffer et al. 2001). Any 
predictions had therefore better be probabilistic 
and hedged about with uncertainty.  

Furthermore, small scale events - including the 
time history of particular bodies of water and the 
occurrence of individual species; things that we 
would like to know – will be inherently 
unpredictable (Harris 1994). Observations bear 
out this assertion. Magnusson et al. (1990) 
showed that the temporal unfolding of a suite of 
properties from a group of “similar” lakes was 
unpredictable and Reynolds (1986) had the same 
problems with attempts at ecosystem scale 
“controls” in large enclosures. 

Parameterisation and data availability 

The debate about parameterisation and data 
availability has been the subject of much 
discussion the hydrological literature (Loague and 
Freeze 1985, Beven 1989, 1993). In fact, Beven 
(1993) preferred the term prophecy to prediction! 
The problems of scale, missing data and the lack 
of inclusion of key processes were discussed by 
Haus (1990). Clark et al. (2001) raised the issue 

of partial and incomplete data and this, together 
with the problems of climate prediction means 
that there are some fundamental problems with 
calibration, validation and prediction (Oreskes et 
al. 1994).  

Spatial and temporal emergence 

Algorithmic process models logically underlie the 
dynamical simulation models. These algorithmic 
models of individual survival and growth must 
account for the outcomes of numerous processes 
– disturbance, dispersal, birth, growth and death 
for different species and functional groups in the 
ecosystem – and the process base for both model 
types must be basically the same. Much can be 
predicted from a basic understanding of some 
basic physics, physiology and the design of the 
organisms (Harris and Griffiths 1987, Harris 
1999a, b, 2001) but the fundamental difference 
between the two types of models is the lack of 
spatial pattern and temporal and spatial 
emergence in the dynamical models.  

Spatially explicit models of individual dispersal, 
growth and death show the emergence of large-
scale patterns (Wootton 2001). Patch dynamics 
are critical in terrestrial habitats (Wu and Loucks 
1995) whereas temporal dynamics, (rainfall, 
flood, drought, ENSO) are dominant in fluid 
environments. Catchments are combinations of 
both but the spatial patterning and emergence is 
critical in terrestrial systems (Wootton 2001). 
Dynamical simulation models do not adequately 
represent the spatial and temporal emergence and 
the temporal unfolding that is so critical for the 
function of catchments and receiving waters. 
Even simple estuarine models (Webster and 
Harris 2003) respond in unexpected ways to the 
higher statistical moments of pulsed nutrient 
inputs. Catchment exports do follow a central 
tendency of Redfield ratios (Harris 1999, 2001, 
2002a, b) but these ratios must now be seen as 
emergent properties of much small scale pattern 
and process.  

Changes to land use in catchments not only 
changes the annual averaged nutrient loads to 
rivers and estuaries but also changes flood 
frequencies and the frequency and magnitude of 
events. Raupach et al.’s (2002) problem arises 
once again. The function of the entire entity is an 
emergent property and therefore prediction is 
limited except in terms of central tendencies and 
statistical properties at a fairly high level (Harris 
1998). Throughout this process of building 
models it is necessary to remind ourselves that 
ecosystems are in many ways irreducibly complex 
(O’Neill 1999), that knowledge of key parameters 
will be lacking and that the necessary data will 
not always be available at the correct scales. 
Omniscience is rare and hubris is to be avoided at 



all costs. Berlinski (1976) published a 
wonderfully pungent critique of ecosystem 
modelling and all its faults. 

A further complication arises from the fact that 
the underlying stochastic drivers of ecosystems as 
well as the chaotic internal dynamics lead to the 
biodiversity that we observe (Gragnani et al. 
1999, Huisman and Weissing 1999, Huppert et al 
2001, Lima et al 2001), and we know that the 
biodiversity controls the overall function, often in 
idiosyncratic ways (Emmerson et al. 2001). While 
there are some overall patterns of response, 
dynamical simulation models do not predict the 
dynamics, emergence, contingency and 
biodiversity of real world systems.  

The fundamental question that now needs to be 
answered is “how often do the small scale 
contingency, indeterminacy, non-linearity and the 
cross-correlations that Vollenweider has revealed, 
engender surprises at higher levels so as to render 
predictions of central tendencies unsafe?” We 
simply do not know. 

Alternatives to standard simulation modelling 
techniques 

The time is ripe for new approaches to 
observation and statistical analysis of ecological 
data. There are alternatives to the usual dynamical 
simulation modelling techniques. Instead of 
building large, over parameterised, models of 
catchments and ecosystems (models which are 
almost impossible to validate) it is possible to use 
the data to objectively determine the most 
parsimonious models. These data based modelling 
(DBM) techniques have been shown to produce 
much simpler, but more robust models, of these 
complex systems (see e.g. Young et al. 1996, 
Young 1998). New techniques of time varying 
parameter (TVP) analysis have begun to reveal 
much new information in water quality data and 
form the basis of new explanations (Young 1999, 
2000). There are objective techniques, derived 
from the econometric literature, which can 
replace Vollenweider’s methodology. 

These new statistical and modelling techniques 
directly address the issues of “lumping” processes 
and parameters, of missing parameters, of lack of 
data and indeterminacy discussed above. In 
essence the data defines the most parsimonious 
model.  In addition the new objective TVP 
techniques directly address the non-stationarity 
and other problems in ecological data. These 
techniques also go the heart of the “theory” versus 
“data” problem of Fox Keller (2002) and lead to 
new approaches to biological systems which rely 
more on reality than some predetermined 
theoretical framework, with all its epistemological 
shortcomings. 

Surprises occur when these models are used. For 
example, a recent analysis of global atmospheric 
carbon dioxide data (Jarvis and Young 2002) has 
revealed new and hitherto unrecognised 
feedbacks which make the present forecasts of 
future atmospheric concentrations unsafe. If the 
new DBM models are confirmed then the future 
path of the greenhouse effect may be quite 
different from that of the present predictions. 

The time is ripe for new observations and models 
– new evidence of the coupling of land use 
change to water quality will be produced, new 
explanations will become possible and this will 
have impact on “evidence based” policy 
development and management techniques. 

Ecological evidence 

As noted above ecosystems show variability at a 
range of scales. They are open systems in which 
the spatial and temporal variability is part and 
parcel of the maintenance of biodiversity and 
function. Quite clearly small scale microbial 
processes dominate many large scale patterns 
(Harris 1999b, 2001, 2002a, b). Much of what we 
see in catchments and water quality seems to 
emerge from much small scale pattern and 
process – microbiology rules. This problem 
urgently needs some new science. This is no time 
to reduce effort on water quality monitoring. We 
need better evidence upon which to base our 
policies. What we thought was mere noise isn’t! 

Human intervention in landscapes changes the 
spatial and temporal scales of variability (through 
things like land use change, habitat fragmentation 
and flow regulation in rivers) and thereby changes 
biodiversity. Biodiversity controls ecosystem and 
landscape function, so that habitat fragmentation 
reduces biodiversity and leads to changes in 
hydrology and the cycling of energy and nutrients 
in catchments (Harris 2002a, b).  

New technologies are now available, particularly 
in the area of hydrology and water quality, which 
make it possible to collect much more complete 
and representative data sets. Automatic sampling 
equipment, internet connections and computer 
data storage make it possible to collect high 
frequency data from catchments and rivers which 
are more representative of the full range of spatial 
and temporal scales of variability. In particular it 
is now possible to move away from arbitrarily 
chosen sampling schemes to a more complete 
analysis of the most significant time and space 
scales – and then to optimise the sampling 
accordingly. This, in itself, will produce more 
concrete evidence of the links between land use 
and river degradation and provide a firmer base 
for “evidence based” policy development and 
management interventions. 



These data may now be used to define 
parsimonious models upon which to base 
management action and policy development. 
Models may be developed which use as much 
information as the data provide – recognising that 
all knowledge is partial at best. In a world of 
climate change and climate variability, even with 
new technologies, it is usually difficult to design 
and complete adequate performance monitoring 
after management interventions. Evidence for 
environmental change is therefore noisy and 
incomplete at best. It is therefore difficult to 
develop unequivocal arguments with which to 
support “evidence based policy” development. A 
more rigorous definition of the required scales of 
measurement is usually required. i.e. what is 
changing over what time scales and what 
evidence of change is required?  

All of the above places more and more emphasis 
on the need for adaptive management (see e.g. 
Walters and Holling 1990). Once we recognise 
that our knowledge is partial and they our 
predictive powers are limited then there is a real 
need for institutional agility and rapid feedback 
from knowledge to response (Lessard 1998). How 
quickly can we respond to changing information 
and new concepts? Why do we cancel 
hydrological and water quality data collection 
programs when we need to data for adaptive 
management? 
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